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Plasma lipidomic profiles of kidney, 
breast and prostate cancer patients 
differ from healthy controls
Denise Wolrab1, Robert Jirásko1, Ondřej Peterka1, Jakub Idkowiak1, 
Michaela Chocholoušková1, Zuzana Vaňková1, Karel Hořejší1, Ivana Brabcová1, 
David Vrána2,3, Hana Študentová2, Bohuslav Melichar2 & Michal Holčapek1*

Early detection of cancer is one of the unmet needs in clinical medicine. Peripheral blood analysis is 
a preferred method for efficient population screening, because blood collection is well embedded in 
clinical practice and minimally invasive for patients. Lipids are important biomolecules, and variations 
in lipid concentrations can reflect pathological disorders. Lipidomic profiling of human plasma by 
the coupling of ultrahigh-performance supercritical fluid chromatography and mass spectrometry 
is investigated with the aim to distinguish patients with breast, kidney, and prostate cancers from 
healthy controls. The mean sensitivity, specificity, and accuracy of the lipid profiling approach were 
85%, 95%, and 92% for kidney cancer; 91%, 97%, and 94% for breast cancer; and 87%, 95%, and 92% 
for prostate cancer. No association of statistical models with tumor stage is observed. The statistically 
most significant lipid species for the differentiation of cancer types studied are CE 16:0, Cer 42:1, 
LPC 18:2, PC 36:2, PC 36:3, SM 32:1, and SM 41:1 These seven lipids represent a potential biomarker 
panel for kidney, breast, and prostate cancer screening, but a further verification step in a prospective 
study has to be performed to verify clinical utility.

Cancer incidence and mortality are increasing worldwide as a result of population aging and changing patterns 
of other risk  factors1. Malignant disorders are categorized according to the site where tumor growth has started, 
regardless of subsequent metastatic spread to other parts of the  body2. Prostate cancer is the second most fre-
quently diagnosed cancer in  men3. Breast cancer is the most frequently diagnosed cancer and one of the main 
causes of cancer-related death in  women4. On the other hand, kidney cancer is the 9th most common cancer 
in men and the 14th most common cancer in  females5. However, there is a marked geographical variation in 
the incidence rate with the highest incidence rates of kidney cancer for men in the Czech Republic among all 
European  countries6. The first tests to detect prostate cancer include the levels of prostate specific antigen (PSA) 
in peripheral blood and the digital rectal examination (DRE). In case of abnormal DRE or elevated PSA levels, 
a transrectal ultrasound-guided biopsy is performed for  verification7. Mammography represents the princi-
pal method for detecting breast cancer screening, but the diagnosis is commonly supported by other imaging 
methods including magnetic resonance imaging, positron emission tomography, computed tomography, or 
single‐photon emission computed  tomography8. Kidney cancer is often discovered by chance during exami-
nation with imaging methods for another  purpose9, such as ultrasound, computed tomography, or magnetic 
resonance  imaging10.

Generally, all imaging methods are subject to the limitation that very small tumors are not properly visualized, 
resulting in low sensitivity for early  stage11. Staging examinations are performed after cancer diagnosis based on 
information regarding the location, spread, and extent of the  tumor12. The diagnosis and treatment of patients in 
the early stage of cancer increase the chance for survival and cure compared to patients diagnosed at the late stage.

Cancer screening methods aim at the early detection of cancer for high-risk  individuals13. Nowadays, more 
attention is devoted to the development of cancer screening methods based on the examination of peripheral 
blood, including liquid biopsy. The analysis of circulating cells, platelets, extracellular vesicles, mRNA, miRNA, 
proteins, cell-free DNA (cfDNA), and circulating tumor DNA (ctDNA) in blood are investigated as potential 
approaches in cancer  screening14. Recently, the successful detection of eight cancer types based on the analysis 
of proteins and mutations in ctDNA in blood was  reported15. Metabolomics also attracts research attention in 

OPEN

1Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 
532 10 Pardubice, Czech Republic. 2Department of Oncology, Faculty of Medicine and Dentistry, Palacký University 
and University Hospital, I.P. Pavlova 6, 775 20 Olomouc, Czech Republic. 3Present address: Comprehensive Cancer 
Center Nový Jičín, Hospital Nový Jičín, Nový Jičín, Czech Republic. *email: Michal.Holcapek@upce.cz

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-99586-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20322  | https://doi.org/10.1038/s41598-021-99586-1

www.nature.com/scientificreports/

cancer  screening16 and other metabolic  disorders17. Lipidomics can be considered as a part of metabolomics that 
deals with the comprehensive analysis of lipids, which are important biomolecules involved in many biological 
processes, such as signaling molecules or constituents of cell membranes, energy storage, and various other 
metabolic  pathways18. Clinical lipidomics revealed that plasma lipid concentrations can be changed for various 
malignant  diseases19,20.

Here, our aim is to quantitatively determine the plasma lipidome of patients with kidney, breast, and prostate 
cancer and compare it with the lipidome of healthy controls. Lipidomic changes are investigated and visualized 
using various multivariate data analysis (MDA) tools, such as principal component analysis (PCA), orthogonal 
projection to latent structures discriminant analysis (OPLS-DA), and receiver operating characteristics (ROC). 
The ultrahigh-performance supercritical fluid chromatography—mass spectrometry (UHPSFC/MS) is used as 
a powerful high-throughput and sensitive method for quantitative lipidomic analysis based on the lipid class 
separation approach recommended for reliable quantitation together with the use of exogenous internal standards 
for individual lipid  classes21,22.

Results
Study design. Heparin plasma samples from 289 cancer patients and 192 volunteers without the history of 
previous malignant disease (further referred to as healthy controls) were obtained. Patients were diagnosed with 
breast, prostate, or kidney cancer based on standard medical procedures at the University Hospital in Olomouc.

The sample set was divided into training and validation sets, whereby about 25% of samples for each cancer 
type and healthy controls were assigned to the validation set. Finally, the training set included 135 healthy 
controls, 209 cancer patients (77 breast, 82 kidney, and 50 prostate cancers), and the validation set included 
57 healthy controls and 80 cancer patients (26 breast, 37 kidney, and 17 prostate cancers). The overview of all 
samples together with the clinical information is summarized in Fig. 1 and Supplementary Tables S1 and S2. 
The average age of healthy volunteers was lower than that of cancer patients, and the average body mass index 
(BMI) was comparable for both sample groups. Cancer patients are classified according to the TNM system. The 
majority of samples are assigned as T1 stage, typically for breast cancer (59%) and kidney cancer (47%), while 
T2 stage is predominant for prostate cancer (69%).

Previous studies reported differences in plasma lipidome depending on  gender23–27. As a consequence, the 
gender effect on the prediction performance using MDA for both genders and gender-separated models was 
evaluated (Supplementary Fig. S1) using OPLS-DA models. The accuracy was slightly higher for gender-separated 
models, in particular, for females. Therefore, the sample set was divided according to gender. Obviously, prostate 
cancer occurs only in men and the overwhelming majority of breast cancer patients are women, so the gender 
separation is an important issue only for kidney cancer, where this study has 73% of men and 27% of women 
samples.

Discovery phase measured by UHPSFC/MS. The order of samples was randomized separately for the 
extraction and UHPSFC/MS measurements to exclude any possible biases. The lipidomic analysis of human 
plasma in the discovery phase resulted in the quantitation of 138 lipids (Supplementary Table S3a) belonging to 
glycerolipids, glycerophospholipids, and sphingolipids.

Non-supervised PCA and supervised OPLS-DA were applied for all training set samples to visualize dif-
ferences between sample groups (healthy controls and cancer patients) for the three cancer types studied 
(Fig. 2A–D). MDA allows the prediction of samples to belong to a particular sample group. The samples of the 
validation set were predicted by the corresponding OPLS-DA model built on the samples of the training set sam-
ples (Supplementary Tables S4 and S5). The specificity, sensitivity, and accuracy values for individual models were 
the following: kidney cancer males—91%, 73%, and 82%; kidney cancer females—88%, 71%, and 84%; breast 
cancer females—88%, 63%, and 76%; prostate cancer—90%, 82%, and 87%. Specificity and sensitivity values 
depending on the cancer stage and accuracy values depending on the cancer type are summarized in Fig. 3 for 
training and validation sets. The prediction performance is only slightly higher for the training set than for the 
validation set, which is an important confirmation that the statistical models do not collapse for the prediction 

Figure 1.  Overview of the sample set (n = 481) used for the study of 3 cancer types. Samples were divided into 
training (75%) and validation sets (25%). Plasma samples obtained from patients with kidney (n = 119), breast 
(n = 103) and prostate (n = 67) cancers and healthy controls (n = 192) were included in the study.
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of samples with unknown classification. ROC curves for the diagnostic ability to classify healthy control and 
cancer patient samples are illustrated in Fig. 3I–L for individual cancer types. The AUC values for the different 
types of cancer types ranged from 0.917 to 0.967 for the training set and from 0.868 to 0.953 for the validation set.

Qualification phase measured by UHPSFC/MS. UHPSFC/MS measurements were repeated after sev-
eral months to verify the repeatability of results, and these repeated measurements are called as the qualification 
phase. The same sample extracts were measured using different sample measurement sequences to minimize 
the risk of hidden biases. In total, 138 lipids were also quantified in the qualification phase (Supplementary 
Table S6a), with 126 of 138 lipids (91%) quantified in both the discovery and qualification phase. The small 
difference is caused mainly by low abundant short fatty acyl glycerolipids close to the limit of quantitation. 
PCA score plots for UHPSFC/MS measurements were compared in Fig. 4A,B. Both data sets show the quality 
control (QC) sample (green) cluster in the PCA score plot, indicating satisfactory method stability during the 
measurement sequence. The partial group separation between cancer (red) and control (blue) groups is already 
observed in non-supervised PCA score plots, which confirms a high reproducibility of the lipidomic profiling, 
as illustrated by numbers of selected samples in Fig. 4A,B. The first and second data sets were compared by cal-
culating the relative standard deviation (RSD) for each lipid in each sample (Supplementary Table S7). In total, 
65% of all values have RSD < 20%, and the average of all RSD for each lipid and all samples is 19%. Figure 4C–E 
further illustrates the reproducibility of quantitative results for selected dysregulated lipids in the discovery and 
qualification phases, as the medians of box plots for the first and second measurements are comparable. Further-
more, the box plots also show that the selected lipid species are downregulated in all cancer types compared to 
the control group (Fig. 4C–E). MDA was also applied for repeated measurements using the training sample set 
for building models. Generally, the prediction performance was comparable for both phases (summary in Sup-
plementary Tables S4 and S5). ROC curves are shown in Fig. 5A–D for all cancer types. AUC values ranged from 
0.888 to 0.994. Furthermore, MDA models for the discovery phase were used to predict the sample set of the 
qualification phase (Supplementary Tables S4 and S8). Specificity, sensitivity, and accuracy values for individual 
models were the following: kidney cancer males—62%, 91%, and 76%; kidney cancer males—86%, 72%, and 

Figure 2.  OPLS-DA models used for the differentiation of cancer and control plasma samples. The training set 
from the discovery phase was measured by UHPSFC/MS and then used to build OPLS-DA models: (A) kidney 
cancer versus control samples for males, (B) kidney cancer versus control samples for females, (C) prostate 
cancer versus control samples for males, and (D) breast cancer versus control samples for females. Annotation: 
blue—healthy controls (N), yellow—cancer stage T1 (T1), orange—cancer stage T2 (T2), light red—cancer stage 
T3 or Tis (T3/Tis), and dark red—unknown cancer stage (Tx).



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20322  | https://doi.org/10.1038/s41598-021-99586-1

www.nature.com/scientificreports/

83%; breast cancer females—94%, 57%, and 76%; prostate cancer—88%, 75%, and 82%. ROC curves are sum-
marized for all samples in Fig. 5E–H for all types of cancer. AUC values ranged from 0.864 to 0.901.

Shotgun MS measurements. To further verify the conclusions of UHPSFC/MS measurements, all sam-
ples were also measured by shotgun MS as an independent alternative technique. 412 lipid species were quanti-
fied by shotgun MS for the categories of glycerolipid, glycerophospholipid, and sphingolipid (Supplementary 
Table S6c), which is about 3 times more quantified lipid species compared to UHPSFC/MS. The MDA prediction 
performance was comparable (Supplementary Tables S4 and S5). ROC curves for training and validation sets 
are summarized in Fig. 5I–L for all types of cancer. AUC values ranged from 0.841 to 1.00. For two of the most 
significantly regulated lipid species, the box plots are presented in Fig. 5M,N for all pathological states and data 
sets for both phases of UHPSFC/MS (1, 2) and shotgun MS (SG).

Influence of the number of lipid species on the prediction capability of statistical models. The 
influence of the number of quantified lipid species used for MDA on the accuracy to correctly classify samples 
was investigated. First, only lipid species common for both phases with UHPSFC/MS and shotgun MS were 
selected. In total, 91 common lipid species were used for MDA in each data set. The overall prediction perfor-
mance was comparable to that obtained when all quantified lipid species were used for MDA, independent of 
the method and diagnosis (Supplementary Tables S4 and S9). The number of lipid species in MDA models was 
further reduced by considering additional statistical criteria, such as fold change (more than ± 20%), p-value 
(< 0.05), and VIP value (> 1). Supplementary Table S10 provide information how variables were reduced. The 
whole data set was divided into 5 data subsets (healthy control vs. kidney cancer samples for males and females, 
healthy control vs. breast cancer samples for males and females, and healthy control vs. prostate cancer samples 
for males) for UHPSFC/MS (1st and 2nd measurements) and shotgun MS, which resulted in 15 data subsets. 
In total, 29 lipid species were statistically significant after the Bonferroni correction for at least 10 from 15 data 
subsets considering all cancer types, methods, and measurements. The accuracy slightly decreased with decreas-
ing number of lipids used for MDA independent of the investigated cancer type and method (Supplementary 
Tables S4 and S11). However, as the decrease of the prediction performance was not so pronounced, the effect of 
further reduction of lipids used for MDA on the prediction performance to correctly assign the sample type was 

Figure 3.  OPLS-DA models were used to predict the pathological state of human subjects. The training set 
was used to build OPLS-DA models. The percentage of specificity (blue), sensitivity (yellow, orange, red), 
and accuracy (green) for training and validation sets using UHPSFC/MS data from the discovery phase are 
presented. The sensitivity was determined for each stage of cancer (yellow—T1, orange—T2, and red—T3), 
excluding samples with unknown cancer stage. Training set: (A) kidney cancer versus healthy control for males, 
(B) kidney cancer versus healthy control for females, (C) prostate cancer versus healthy control for males, and 
(D) breast cancer versus healthy control for females. Validation set: (E) kidney cancer versus healthy control for 
males, (F) kidney cancer versus healthy control for females, (G) prostate cancer versus healthy control for males, 
and (H) breast cancer versus healthy control for females. ROC curves with the corresponding AUC values are 
presented, where the continuous lines represent the ROC curve for the training set, and dashed lines for the 
validation set. (I) kidney cancer versus healthy control for males, (J) kidney cancer versus healthy control for 
females, (K) prostate cancer versus healthy control for males, and (L) breast cancer versus healthy control for 
females.
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investigated. CE 16:0, Cer 42:1, LPC 18:2, PC 36:2, PC 36:3, SM 32:1, and SM 41:1 were significant according to 
the Bonferroni correction for at least 14 of the 15 data subsets considering all cancer types, methods and meas-
urements. MDA was performed for these 7 lipid species and the prediction performance was evaluated (Supple-
mentary Tables S4 and S12). The average of sensitivity, specificity, and accuracy values for the different number 
of lipids considering all methods and genders was calculated (Fig. 6). Generally, the sensitivity and consequently 
the accuracy decreased with decreasing number of lipids used for MDA. The specificity was not affected by the 
number of lipid species, independent of the cancer type (Fig. 6). No effect of the cancer stage on concentrations 
of the most significant lipid species was observed for all types of cancer (Supplementary Fig. S2).

Statistical evaluation of data. The different plasma lipidomic profiles depending on cancer type were 
investigated by evaluating statistically significant lipid species after Bonferroni correction, lipid species with a 
fold change of ± 20%, and VIP value > 1. The percentage of lipid species belonging to the lipid class fulfilling the 
defined criteria was calculated, as illustrated by the pie charts for different cancer types in Fig. 7A–D. Nonpolar 
lipid species, triacylglycerols and cholesterol esters, are of greater relevance in kidney cancer, while the influence 
of glycerophospholipids and sphingolipids appears to be dominant in breast and prostate cancer.

The most significant lipid species for all methods and data sets are downregulated in plasma samples of 
cancer patients, independent of the cancer type, as illustrated in Fig. 7E–G. MDA was used to investigate the 
differences between healthy control samples and different types of cancer types for all quantified lipid species, 91 
lipid species for UHPSFC/MS and shotgun MS, 29, and finally, 7 most significant lipid species for all data sets. 
OPLS-DA models for samples obtained from healthy male controls and male patients suffering from prostate 
and kidney cancer as well as samples obtained from healthy female controls and female patients suffering from 
kidney and breast cancer are shown in Fig. 8A,B. The question was whether differentiation and prediction of 
cancer type and healthy control samples are possible using UHPSFC/MS. The specificity ranged from 67 to 
97% with the average of 83%, sensitivity for kidney cancer from 49 to 74% with the average of 61%, sensitivity 
for prostate from 0 to 66% with the average of 43% and the accuracy from 57 to 74% with the average of 65% 
for the training and validation set and different numbers of lipids (138, 91, 29, and 7 lipid species) included to 
build the MDA models considering samples obtained from male donors (Fig. 8A, Supplementary Table S13). 
The specificity ranged from 80 to 96% with the mean of 90%, sensitivity for kidney cancer from 0 to 44% with 

Figure 4.  Comparison of UHPSFC/MS results in discovery and qualification phases. (A) PCA of all samples 
(validation and training sets) in the discovery phase. (B) PCA of all samples (validation and training sets) in the 
qualification phase (red—cancer (T), blue—control (N), and green—QC). Selected samples were annotated for 
comparison purposes. Boxplots comparing the concentrations of samples obtained from patients with different 
pathological states (blue: control, orange: kidney cancer, light blue: prostate cancer, and pink: breast cancer) for 
the discovery phase (1) and qualification phase (2) for (C) LPC 18:2, (D) PC 36:2, (E) Cer 42:1 using UHPSFC/
MS.
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Figure 5.  ROC curves with the corresponding AUC values are presented, where the continuous lines represent 
the ROC curve for the training set and dashed lines for the validation set using UHPSFC/MS. (A) kidney cancer 
versus healthy control for males, (B) kidney cancer versus healthy control for females, (C) prostate cancer 
versus healthy control for males, and (D) breast cancer versus healthy control for females using data from the 
qualification phase for MDA, and (E) kidney cancer versus healthy control for males, (F) kidney cancer versus 
healthy control for females, (G) prostate cancer versus healthy control for males, and (H) breast cancer versus 
healthy control for females predicting the data from the qualification phase using the discovery phase for 
MDA, (I) kidney cancer versus healthy control for males, (J) kidney cancer versus healthy control for females, 
(K) prostate cancer versus healthy control for males, and (L) breast cancer versus healthy control for females 
using shotgun MS data for MDA. Box plots comparing concentrations of samples obtained from patients with 
different pathological states (blue: healthy control, orange: kidney cancer, light blue: prostate cancer, and pink: 
breast cancer) for discovery (1) and qualification (2) phases using UHPSFC/MS and shotgun MS (SG): (M) PC 
36:3, and (N) SM 32:1.
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the mean of 24%, sensitivity for breast cancer from 60 to 83% with the mean of 73% and the accuracy from 66 
to 78% with the mean of 74% for the training and validation set and different numbers of lipids (138, 91, and 29 
lipid species) included to build the MDA models considering samples obtained from female donors (Fig. 8B). It 
was not possible to perform the MDA model using 7 lipid species as variables due to the insufficient number of 
components for samples obtained from female donors.

The differentiation of the cancer type was also investigated by performing OPLS-DA models that classify 
kidney cancer versus prostate cancer for males (Fig. 8C) and kidney cancer versus breast cancer for females 
(Fig. 8D and Supplementary Table S14). OPLS-DA models were evaluated using 138 and 91 lipids as variables 
for males and 138, 91, and 29 for females using UHPSFC/MS data, since for the lower number of lipids a lack 
of components was observed. The sensitivity for prostate cancer was 71–88% with the mean of 81% and for 
kidney cancer 57–82% with the mean of 72% for the training and validation set and both UHPSFC/MS data sets 
considering male samples. The sensitivity for breast cancer ranged between 94 and 100% with the mean of 98%, 

Figure 6.  Influence of decreased number of lipid species used for MDA using UHPSFC/MS data in the 
discovery phase. (138 lipids: no exclusion, 91 lipids: common lipids from the discovery and qualification 
phase using UHPSFC/MS and shotgun MS, 29: only lipid species included, which are significant according 
to the Bonferroni correction for at least 10 from 15 models. SM 38:1 and SM 42:1 were excluded, because 
these variables were only significant for UHPSFC/MS data sets (10/10) and therefore a method bias cannot be 
excluded. 7: only lipid species included, which are significant according to the Bonferroni correction for at least 
14 from 15 models. The average of the specificity (blue), sensitivity (red), and accuracy (green) for validation 
and training set as well as for both genders were calculated. (A) kidney cancer, (B) breast cancer, and (C) 
prostate cancer.
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the sensitivity for kidney cancer ranged between 14 and 86% with the mean of 57%, and the accuracy ranged 
between 80 and 97% with the mean of 88% for the training and validation set and both UHPSFC/MS data sets 
considering female samples.

Discussion
Cancer screening as part of a regular health examination can allow early cancer detection and timely treatment, 
resulting in improved clinical outcomes. Circulating biomarker measurement as a minimally invasive and rou-
tinely used method seems to be one of the most attractive and convenient method for screening of high-risk 
individuals. Current approaches focus on the analysis of genetic mutations, ctDNA, or proteins for early cancer 
diagnosis in plasma or serum. To date, the clinical utility of lipidomic analysis for this purpose has not been 
clearly demonstrated.

In the present study, we performed quantitative lipidomics of human plasma samples collected from healthy 
controls and cancer patients by UHPSFC/MS. We paid special emphasis to the accurate molar quantitation of 
lipid species allowing the future interlaboratory comparison of the results if the same measurement protocol is 
applied.

MDA revealed the applicability of lipidomics as a diagnostic tool for all three cancer types studied. The 
performance of classification models in cancer prediction was characterized by high sensitivity, specificity, and 
accuracy. Nonpolar lipids, such as cholesteryl esters and triacylglycerols, are more important for kidney cancer, 
while differences in sphingolipid and glycerophospholipid profiles are more pronounced in breast and prostate 
cancers. The reduction in the number of quantified lipid species used for MDA showed only a slight loss in 
sensitivity, specificity, and accuracy. Nevertheless, the decrease in method complexity compared to the overall 
lipidomic profiling could facilitate potential clinical use.

Our results are consistent with previous reports on plasma or serum alterations in patients with different 
types of  cancer19, including breast  cancer28–30, pancreatic  cancer23,31, kidney  cancer32, lung  cancer33,34, and pros-
tate  cancer35,36. We observed downregulation of multiple plasma lipid species in patients compared to healthy 
volunteers. Previous reports also showed the association of hypolipidemia with some  malignancies37, but the 
peripheral blood lipidome may also be affected by other  factors38.

Based on previous  literature39,40, we hypothesize that the observed alterations in lipid concentrations are the 
overall result of complex processes in the human body, including the accumulation of lipids in plasma to favor 
tumor growth. Malignant cell proliferation requires excess lipids to build membranes, organelles, and partici-
pate in signaling  processes41. The statistical analysis showed that the following seven lipids downregulated in 
patients’ plasma had the most significant effect on the differentiation between cases and controls: CE 16:0, Cer 
42:1, LPC 18:2, PC 36:2, PC 36:3, SM 32:1, and SM 41:1. CE 16:0 may be a potential source of palmitic acid 
for cancer cells. Palmitic acid can be converted to phospholipids, sphingolipids, glycerolipids, and other fatty 
acids essential for cancer cell survival. Louie et al. showed that cancer cells and tumors robustly incorporate 

Figure 7.  Distribution of lipid class percentage for individually lipid classes, which are significant according 
to the Bonferroni correction for the discovery phase: (A) kidney cancer males, (B) kidney cancer females, 
(C) prostate cancer males, and (D) breast cancer females. Dendrograms for 7 lipid species quantified in the 
discovery phase using UHPSFC/MS for both genders and training and validation sets for: (E) kidney cancer, (F) 
prostate cancer, and (G) breast cancer.
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exogenous palmitic acid and remodel it into other oncogenic lipid  species42. Sphingolipids play an essential role 
in signal transduction pathways that regulate cell growth/death, migration, and senescence. Cancer cells can 
dysregulate enzymes involved in the metabolism of sphingolipids, resulting in the suppression of apoptosis, e.g., 
through downregulation of pro-cell death sphingolipids, such as  ceramides43,44. LPC act as bioactive proinflam-
matory signaling  molecules45. LPC are also substrates for LPA synthesis, and subsequently, LPA can modulate the 
immunological response and promote tumor cell  growth46. PC are major components of membranes necessary 
for cell proliferation and survival. The alteration in PC metabolism is a potential signature of tumor progres-
sion and could be a good target for  therapy47. The molecular biology techniques or MS-based approaches with 
stable isotope-labeled metabolites in future biological studies could shed more light on the lipid metabolism in 
cancer. Current data based on the analysis of lipids in human plasma could not explain the complete biological 
mechanism of ongoing processes in cancer.

Some previous studies have reported dysregulation of lipids in several  diseases17,48–50. Unfortunately, molar 
concentrations are often not provided for measured lipids, therefore, the correlation of their conclusions with 
other studies is difficult. In any case, the future prospective study should include a group of cases with other 
nonmalignant conditions to determine whether the lipidomic analysis has the clinical utility for their differen-
tiation from not only from healthy controls, but also from other diseases. It will also be worth investigating the 
discrimination potential of seven lipids versus the broader lipidomic profiling. In the present study, the accuracy 
decrease for cancer patients versus healthy controls is relatively low, but the comparison with patients with other 
nonmalignant diseases has not yet been performed.

In conclusion, the present data indicate the potential of lipid profiling in cancer screening, at least for breast, 
kidney, and prostate cancers. The use of individual MDA models to distinguish healthy control samples and the 
single cancer type results in higher accuracy than MDA models that include multiple cancer types. The use of IS 
for each lipid class allows the quantitation of lipid species and the comparison of lipid concentrations between 
different laboratories. Subsequent prospective studies are necessary for seven lipid species identified as potential 
biomarkers for cancer screening.

Figure 8.  OPLS-DA models for the differentiation of the sample type like cancer type and control samples 
(A) males and (B) females using the concentrations of the 138 lipids determined in the discovery phase with 
UHPSFC/MS for the training set. OPLS-DA models for the differentiation of (C) prostate and kidney cancer 
samples for males and (D) breast and kidney cancer samples for females.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20322  | https://doi.org/10.1038/s41598-021-99586-1

www.nature.com/scientificreports/

Methods
Human samples. A retrospective study was performed on 481 human plasma samples. A total of 192 con-
trol samples and 289 cancer samples from patients with breast, kidney, or prostate cancer were collected. The cri-
teria for healthy controls were that they did not have any type of cancer during the life time and age over 18 years. 
For cancer patients, the disease was histologically confirmed by needle biopsy or by examining the surgical 
resection specimen. Both cancer patients and healthy controls were of the same ethnicity (Caucasian), collected 
in the same place (University Hospital in Olomouc) and processed in the same way. No other exclusion criteria 
were applied. The clinical information for all patients and controls is summarized in Fig. 1 and Supplementary 
Tables S1 and S2. The sample set was divided into training (using to build OPLS-DA models) and validation 
(indicates the possible use for samples with unknown classification) sets. Each fourth sample was assigned to the 
validation set, to obtain a distribution of the 75% of samples belonging to the training set and 25% of the samples 
to the validation set. Patients had no treatment before blood collection. Human plasma was collected in 9 mL 
lithium-heparin collection tubes and then centrifuged. The supernatant was transferred, aliquoted, and stored at 
− 80 °C until further processing for lipidomic analysis.

Ethics declaration. The study was approved by the ethical committee of the University Hospital Olomouc. 
All subjects signed an informed consent. All methods were carried out in line with Ethical Principles for Medical 
Research Involving Human Subjects (Declaration of Helsinki).

Study phases. The lipidome of 481 plasma samples was measured by UHPSFC/MS in the discovery phase. 
To ensure that UHPSFC/MS results are reproducible, the same extracts were measured again several months 
later corresponding to the qualification phase. The sequence of sample measurements was randomized to 
exclude any measurement bias. The data set was independently processed and the results were compared to the 
discovery phase. Furthermore, the extracts were also measured with shotgun MS to exclude any bias caused by 
the employed method, independently processed, and compared with UHPSFC/MS results.

Chemicals. Solvents for analysis, such as acetonitrile, 2-propanol, methanol (HPLC/MS grade), water 
(UHPLC/MS grade), and hexane, were purchased from Honeywell (Riedel-da Haën, CHROMASOLV™ LC–MS 
Ultra, Hamburg, Germany), distributed by Fisher Scientific (Waltham, Massachusetts, USA). Chloroform sta-
bilized with 0.5–1% ethanol was purchased from Sigma-Aldrich (St. Louis, MO, USA) or Merck (Darmstadt, 
Germany), respectively. Ammonium acetate was purchased from Fisher Scientific. Deionized water for liquid–
liquid extraction was obtained from a Milli-Q Reference Water Purification System (Molsheim, France). Carbon 
dioxide of 4.5 grade (99.995%) was purchased from Messer Group (Bad Soden, Germany). Non-endogenous 
lipids were used as internal standards (IS) for quantitative analysis, i.e., MG 19:1/0:0/0:0, DG 12:1/0:0/12:1, and 
TG 19:1/19:1/19:1 from Nu-ChekPrep (Elysian, MN, USA); CE 16:0 D7, Cer d18:1/12:0, cholesterol D7, LPC 
17:0/0:0, LPE 14:0/0:0, PC 14:0/14:0, PC 22:1/22:1, PE 14:0/14:0, PI 15:0/18:1 D7, SM d18:1/12:0, PS 14:0/14:0, 
PA 14:0/14:0, PG 14:0/14:0, LPG 14:0/0:0, HexCer d18:1/12:0, Hex2Cer d18:1/12:0, and SHexCer d18:1/12:0 
from Avanti Polar Lipids (Alabaster, AL, USA). The concentrations of stock solutions of individual IS and the 
volumes needed to prepare the IS mixture are summarized in Supplementary Table S15.

Lipidomic analysis. For the extraction of lipids, a modified Folch procedure was employed, which was pre-
viously  validated51. The same sample extracts were analyzed with UHPSFC/MS and shotgun MS. Human serum 
(25 µL) and the mixture of IS (17.5 µL) were homogenized in 3 mL of chloroform/methanol (2:1, v/v) for 10 min 
in an ultrasonic bath (40 °C). When the samples reached ambient temperature, 600 µL of water was added, and 
the mixture was vortexed for 1 min. After 3 min of centrifugation (3000 rpm), the aqueous layer was removed, 
and the organic layer was evaporated under a gentle stream of nitrogen. The residue was dissolved in a mixture 
of 500 µL of chloroform/2-propanol (1:1, v/v), carefully vortexed and filtered (0.2 µm syringe filter). The extract 
was diluted 1:20 with the mixture of hexane/2-propanol/chloroform (7:1.5:1.5, v/v/v) for UHPSFC/MS analysis 
and 1:8 with chloroform/methanol/2-propanol (1:2:4, v/v/v) mixture containing 7.5 mM of ammonium acetate 
and 1% of acetic acid for shotgun MS analysis.

UHPSFC/MS measurements were carried out on an Acquity Ultra Performance Convergence Chromatog-
raphy (UPC2) system hyphenated to the hybrid quadrupole traveling wave ion mobility time-of-flight mass 
spectrometer Synapt G2-Si from Waters using the commercial interface kit (Waters, Milford, MA, USA). Chro-
matographic settings were used with minor improvements from the previously published  method51,52. UHPSFC 
analyses were measured on the Viridis BEH column (100 × 3 mm, 1.7 µm) using a linear gradient with super-
critical  CO2 and as a modifier, MeOH with 30 mM ammonium acetate and 1% water: 0 min—1% modifier, 
5 min—51% modifier, 6.5 min—51% modifier, 6.8 min—1% modifier. The total run time including the equilibra-
tion was 7.5 min. The automatic back-pressure regulator was set to 1800 psi, the column temperature to 60 °C, 
the flow to 1.9 mL/min, and the injection volume was 1 µL. The injection needle was washed after each injection 
with hexane/2-propanol/water (2:2:1, v/v/v). The make-up solvent was MeOH with 30 mM ammonium acetate 
and 1% water with the flow rate of 0.25 mL/min. The following parameters were set for MS measurements: the 
positive ion electrospray ionization (ESI) in the sensitivity mode, the mass range of m/z 150–1200, the capil-
lary voltage of 3 kV, the sampling cone of 20 V, the source offset of 90 V, the source temperature of 150 °C, the 
desolvation temperature of 500 °C, the cone gas flow of 50 L/h, the desolvation gas flow of 1000 L/h, and the 
nebulizer gas flow of 4 bar. The analysis was done in the continuum mode with a scan time of 0.1 s and the lock 
mass scanning. Leucine enkephalin peptide was used as a lock mass with the scan time of 0.1 s and the interval 
of 30 s interval. The lock mass was scanned but the mass correction was not automatically applied. All samples 
were measured in duplicates. Noise reduction was performed on the raw files using the Waters compression tool. 
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Data files were lock mass corrected and converted into centroid data using the exact mass measure tool from 
Waters. The MarkerLynx software from Waters was used for data preprocessing. Further data processing was 
done by LipidQuant 1.0  software53.

Shotgun experiments were performed on a 6500 QTRAP quadrupole linear ion trap mass spectrometer 
(Sciex, Concord, ON, Canada) equipped with an ESI probe using the characteristic precursor ion (PIS) and 
neutral loss (NL) scan  events54. Raw data files were processed with the Sciex LipidView Software from Sciex in 
order to obtain a summary table of m/z versus intensity for each scan mode (NL and PIS) of all samples. Raw 
data were prefiltered by applying the following settings in the positive ion mode, a tolerance mass window of 
0.5 Da, a minimum intensity threshold of 0.1%, and a minimum signal-to-noise ratio of 3 after smoothing. The 
summary tables of m/z versus intensity for all samples were exported as txt files and further processed by the 
LipidQuant 1.0 software.

Data processing. LipidQuant 1.0 is a Microsoft Excel based script used for the automated data processing 
of txt  files53 including m/z values versus intensities for all samples. The experimental m/z values were compared 
with the theoretical m/z values from the embedded database for lipid identification, depending on the retention 
time window or scan type defining the lipid class. The lipid quantitation was performed by calculating the ratio 
of the intensities of the target lipid and the internal standard and multiplying with the known concentration of 
the internal standard. Isotopic correction type  II55 was automatically applied and a summary table containing 
lipid concentrations in all samples was generated. Zero filling for missing values was applied by setting the num-
ber for 80% of the minimum measured concentration for a given lipid species for all samples. If the concentra-
tion was not determined for more than 25% of the samples, then the lipid species was excluded from the data 
set. The data set was divided into training and validation set by assigning each fourth sample to the validation 
set. Clinical information for the samples, like gender and pathological state, was revealed, and samples were 
assigned. Final tables containing the lipid concentrations for all samples and fulfilling all defined criteria were 
used for MDA and other statistical tools.

Statistical analysis. MDA was performed with SIMCA software, version 13.0 (Umetrics, Sweden). The 
lipid species were defined as variables, and the samples as observations. The data set was preprocessed by apply-
ing logarithmic transformation, pareto scaling, and centering. Data preprocessing should facilitate the normal 
distribution of lipid concentrations and that low abundant lipid species contribute similarly to the MDA as high 
abundant lipid species. PCA was performed to evaluate for outliers, estimate measurement quality by check-
ing the clustering of QC samples, and evaluate the clustering of sample groups depending on the pathological 
state. OPLS-DA is a statistical tool for visualizing differences between sample groups of known classification. 
OPLS-DA was built using the training set and then used for the sample prediction of the validation set. For both 
PCA and OPLS-DA, the score scatter plots for the first two components are visualized, although more compo-
nents may contribute to the model. The number of components for PCA and OPLS-DA models was determined 
by selecting the option autofit in the SIMCA software, where only components are considered of significance 
according to cross-validation rules. The cross-validation is automatically applied following Eastment et al. for 
 PCA56 and Martens et al. for OPLS-DA57. The data set is divided into seven groups, omitting one group, build-
ing the model and predicting the excluded group. This is repeated for each group, and the results of predictions 
reveal the number of significant components, which is provided in Supplementary Table S4. OPLS-DA revealed 
differences in lipidome by using gender as a classifier. As a consequence, the data sets for females and males were 
treated separately for investigation of the prediction performance.

Microsoft Excel was used for the calculation of average lipid concentrations obtained for all sample groups, 
fold change, T-value, and p-value. For the calculation of p-value, a two-sided two-sample T-test assumed unequal 
variances (Welch test) for the samples obtained from healthy controls and patients with kidney, breast, or pros-
tate cancer. p-values < 0.05 were considered as significant, but p-values were further evaluated according to the 
Bonferroni correction. All statistical parameters for all lipids are summarized in Supplementary Tables S3 and S6 
below the lipid concentrations measured in individual samples and Supplementary Table S10. Another parameter 
indicating some relevance to differentiate samples from healthy controls and cancer patients, is the variable of 
importance (VIP) value obtained for each OPLS-DA plot. The most regulated and statistically significant lipid 
species with a fold change ± 20%, a p-value < 0.05, and a VIP value > 1 for all methods and phases are summarized 
in Supplementary Table S10. Box plots were used to better visualize lipid species concentrations depending on 
the health state. The box plots were constructed in R free software environment (https:// www.r- proje ct. org) 
using readxl and ggplot2 packages. In each box plot, the median was presented by a horizontal line, the box 
represented the first and the 3rd quartile values, and whiskers stood for 1.5*IQR from the median, and each 
measurement was plotted as a jittered point value. The receiver operating characteristics curves were generated 
by using the packages readxl and AUC in R. The dendrograms were also constructed in  R58. For the circular 
dendrograms, the Euclidean distances were calculated, and then the upgma function from the phangorn library 
was used for clustering (the Ward agglomeration method was selected). Circular dendrograms were generated 
and surrounded by the heatmap (ggtree and gheatmap functions – ggtree library). For the presentation of the 
heatmap, all concentrations were min–max scaled.

Data availability
All data relevant for the conclusions presented conclusions are provided in the manuscript or in the supplemen-
tary tables. Raw files of all measurements can be provided on request from the corresponding author.

https://www.r-project.org
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