

Dyes and Pigments 50 (2001) 203-209

www.elsevier.com/locate/dyepig

²⁷Al, ¹⁵N, ¹³C and ¹H NMR spectra and negative-ion electrospray mass spectra of the 2:1 aluminium(III) complexes of azo dyes derived from anthranilic acid

A. Lyčka^{a,*}, D. Luštinec^b, J. Holeček^b, M. Nádvorník^b, M. Holčapek^c

^aResearch Institute for Organic Syntheses, CZ-532 18 Pardubice-Rybitví, Czech Republic ^bDepartment of General and Inorganic Chemistry, University of Pardubice, CZ-532 10 Pardubice, Czech Republic ^cDepartment of Analytical Chemistry, University of Pardubice, CZ-532 10 Pardubice, Czech Republic

Received 20 March 2001; accepted 5 July 2001

Abstract

The ²⁷Al, ¹⁵N, ¹³C and ¹H NMR spectra in DMSO and mass spectra of 2:1 aluminium(III) complexes (1b–4b) derived from anthranilic acid azo coupling products with 4-tert.butylphenol (1a), 2-naphthol (2a) acetoacetanilide (3a) 3-methyl-1-phenylpyrazol-5-one (4a) were measured and analysed. It was found that the aluminium atom was six-coordinated, being bound to two oxygens and the nitrogen originating from anthranilic acid. \bigcirc 2001 Published by Elsevier Science Ltd.

Keywords: Aluminium(III)-azo dye complexes, ²⁷Al NMR; ¹⁵N NMR; ¹³C NMR; ¹H NMR; Negative-ion electrospray mass spectra

1. Introduction

Metal-dye complexes play a very important role in dyestuff technology [1-5]; chromium, cobalt, copper, nickel and aluminium derivatives are used most frequently for these purposes [1-6].

We have shown in previous papers [7–10] that NMR spectroscopy is a very sensitive probe to study such compounds. The aim of this paper was to characterise 2:1 aluminium(III) complexes of azo dyes **1b–4b** (Scheme 1) derived from anthranilic acid azo coupling products with 4-*tert*. butylphenol (**1a**), 2-naphthol (**2a**), acetoacetanilide (3a) and 3-methyl-1-phenylpyrazol-5-one (4a) (Scheme 2) by means of ²⁷Al, ¹⁵N, ¹³C and ¹H NMR and to study the structure from the view-point of coordination at the aluminium atom and to compare the data with those published for analogous complexes in which substituted 2-hydroxy-anilines were used in preparation of starting azo dyes [9] (i.e. with compounds in which –COO group was substituted by –O group).

2. Experimental

2.1. Synthesis

Ammonium salts of compounds **1b–3b** (Scheme 1) were prepared from appropriate precursors **1a–3a**

^{*} Corresponding author. Fax: +420-40-6822299. E-mail address: antonin.lycka@vuosas.cz (A. Lyčka).

^{0143-7208/01/\$ -} see front matter O 2001 Published by Elsevier Science Ltd. PII: S0143-7208(01)00049-3

1b

2b

(Scheme 2) and $Al_2(SO_4)_3 * 18H_2O$ and ammonium analogously to cobalt derivatives in formamide solution [5]. Compound **4b** was prepared in the following way: 1.28 g of **4a** was dissolved in 20 ml of formamide and barium hydroxide dissolved in 10 ml of formamide was added. The mixture was heated 20 min at 70 °C and solid barium salt of **4a** was formed. Then 1.59 g of $Al_2(SO_4)_3 * 18H_2O$ in 20 ml of formamide was added and the mixture was stirred overnight at 90 °C. The reaction mixture was poured into 30 ml of water and the raw product was dried over P_2O_5 .

All aluminium complexes were purified using column chromatography (Al₂O₃, methanol). Methanol was evaporated in vacuo at 25 °C.

At N_b ^{15}N labelled compounds were prepared analogously in formamide solution using Na

 $^{15}NO_2$ (95% ^{15}N) in preparation of compounds **1a–4a**.

2.2. NMR spectroscopy

The ²⁷Al (93.84 MHz), ¹⁵N (36.50 MHz), ¹³C (90.56 MHz) and ¹H (360.13 MHz) NMR spectra of compounds **1b–4b** were measured on a Bruker AMX 360 spectrometer equipped with 5 mm broadband probe and 5 mm broadband inverse probe and a Silicon Graphic Indy computer in hexadeuteriodimethyl sulfoxide at ambient temperature. The ²⁷Al chemical shifts are referred to external Al(OH)₆³⁺ in water [δ (²⁷Al)=0.0], ¹⁵N chemical shifts to external neat nitromethane [δ (¹⁵N)=0.0] and ¹³C and ¹H chemical shifts were referred to the central peak of DMSO-*d*₆

Benefite

 $[\delta(^{13}C) = 39.60, \ \delta(^{1}H) = 2.55]$. Positive values of chemical shifts denote high frequency shifts with respect to standards.

Two-dimensional H,H-COSY, NOESY, gs (gradient selected)-HMQC and gs-HMBC [11,12] techniques were measured using standard micro-programs provided by Bruker.

2.3. Mass spectrometry

Mass spectra were measured on the ion trap analyser Esquire3000 (Bruker Daltonics, Bremen, Germany). The samples were dissolved in 50% aqueous acetonitrile and analysed by direct infusion at the flow rate 1–3 µl/min. Mass spectra were recorded in the range m/z 15–1000 using electrospray ionization (ESI) in the negative-ion mode. The isolation width of the precursor ion for MS/MS and MSⁿ measurements was m/z = 4 and the collision energy was in the range 0.6–1 V depending on the stability of individual ions.

3. Results and discussion

3.1. NMR spectra

The ²⁷Al, ¹⁵N, ¹³C and ¹H chemical shifts of complexes **1b–4b** as well as starting azo dyes **1a–4a** measured in DMSO-D₆ are collected in Tables 1–4.

The ¹H and ¹³C chemical shifts were assigned using H,H-COSY, gs (gradient selected)-HMQC and gs-HMBC [11,12] [optimised for ¹J(¹³C, H) ca 150 Hz and ³J(¹³C, H) ca 8 Hz]. A correlation of proton H(3') with carbon of COO group in HMBC spectra was a key information for the assignment of proton and carbon resonances C(1')–C(7').

Only one set of appropriate NMR signals was obtained for each of compounds **1b–4b** which means that both ligands in a molecule of complexes are equivalent, at least on the NMR time scale. On the contrary, Schetty and Kuster [13] observed three components having considerably different shade in cobalt analogue of compound **2b**.

Table 1 ¹H, ¹³C, ¹⁵N and ²⁷Al NMR chemical shifts of compounds 1a,b in DMSO- d_6

	1a		1b	
	$\delta(^{1}H)$	$\delta(^{13}C)$	$\delta(^{1}H)$	δ(¹³ C)
1	_	137.62	_	140.46
2	_	150.15	_	157.28
3	6.99	118.34	6.18	122.12
4	7.51	131.03	7.30	135.46
5	-	142.03	-	138.73
6	7.89	127.29	7.69	109.97
7	-	33.88	-	33.58
8	1.36	31.17	1.34	30.99
1′	-	148.45	-	149.32
2′	_	133.52	_	128.65
3′	7.98	130.77	8.12	131.22
4′	7.59	130.63	7.56	129.01
5′	7.63	130.89	7.69	131.90
6'	7.84	115.21	7.81	120.32
7′	_	167.83	_	164.76
Na	-	80. 9 ^a	-	-34.0^{a}
N _b	_	129.5 ^{a,b}	_	99.5 ^{a,b}
Al	-	-	-	0.5 ^c

^a $\delta(^{15}N)$.

^b ¹⁵N labelled compound.

^c $\delta(^{27}\text{Al}).$

The coordination number of aluminium atom in compounds **1b–4b** can be determined by the measurement of NMR spectra of two nuclei directly involved in this process: nitrogen and aluminium.

²⁷Al NMR spectroscopy is a powerful tool for coordination studies [14-17]. The ²⁷Al chemical shifts are determined by two main factors: coordination number and the nature of ligands. The ²⁷Al chemical shifts move generally downfield passing from six- to five- and four-coordinated aluminium atoms, respectively. The ²⁷Al chemical shifts in compounds 1b-4b were found to resonate in a very narrow range from 0.5 to 2.3 ppm and they give the evidence for the aluminium central atom to be six-coordinated, because the ²⁷Al chemical shifts practically coincide with the signal of standard. Hence, two measurements had to be performed for each sample, one with the standard in a coaxial capillary, in which the absolute resonance frequency of standard was determined, and the second one, in which relatively broad ²⁷Al NMR signal of a complex was detected.

	5			
	2a		2b	
	$\delta(^{1}H)$	δ(¹³ C)	$\delta(^{1}\mathrm{H})$	δ(¹³ C)
1	_	130.59	_	128.78
2	_	179.16	_	160.40
3	6.67	126.87	6.42	124.51
4	7.88	142.71	7.80	139.90
4a	_	128.37	_	127.06
5	7.68	129.32	7.80	128.13
6	7.46	127.18	7.47	124.43
7	7.59	129.36	7.69	128.32
8	8.41	122.22	8.56	121.28
8a	_	133.37	_	133.90
1′	—	144.09	-	150.25
2'	—	117.08	_	134.33
3′	8.06	131.56	8.13	131.97
4′	7.33	124.50	7.54	128.78
5′	7.77	134.51	7.74	132.22
6'	8.34	116.32	7.87	120.90
7′	—	167.60	-	165.21
Na	16.42	-195.7 ^a	_	$-59.7^{\rm a}$
N _b	—	-21.4 ^{a,b}	-	75.0 ^{a,b}
Al	_	-	_	1.6 ^c

Table 2 ¹H, ¹³C, ¹⁵N and ²⁷Al NMR chemical shifts of compounds **2a,b** in DMSO-*d*₆

^a $\delta(^{15}N)$.

^b ¹⁵N labelled compound.

^c δ(²⁷Al).

To decide if the sixfold coordination is due to solvent interaction (because DMSO is known to be a strong coordinating solvent) or to interaction with one nitrogen of each azo/hydrazone bond, additional indications come from ¹⁵N NMR spectra. In previous papers [7,9] we reported on the application of ¹⁵N NMR as a very sensitive technique for the detection of the existence of coordination as well for the determination of coordination position of nitrogens in -N=N- and -NH-N= groups, respectively. To assign ¹⁵N resonances undoubtedly and because of low solubility of compounds studied, it was necessary to prepare ¹⁵N selectively enriched compounds for the measurement of ¹⁵N chemical shifts.

Upfield ¹⁵N chemical shifts of about 100 ppm were observed on protonation of various heterocyclic derivatives, e.g. pyridine, purine, indolizine, etc. [18,19], where the nitrogen atom lone pairs are engaged in a bonding. The similar effect $[\Delta\delta(^{15}N) = 102-146 \text{ ppm}]$ [20] is also typical of the coordination of a nitrogen atom of azo dyes

Table 3 ¹H, ¹³C, ¹⁵N and ²⁷Al NMR chemical shifts of compounds **3a,b** in DMSO-*d*₆

	3a		3b	
	$\delta(^{1}H)$	δ(¹³ C)	$\delta(^{1}H)$	$\delta(^{13}C)$
1	2.54	26.20	2.61	26.30
2	_	198.97	_	198.61
3	_	129.27	_	125.48
4	-	160.69	-	160.06
5	_	137.53	_	135.87
6	7.67	120.28	7.17	120.71
7	7.39	129.15	7.07	128.83
8	7.17	124.53	7.07	125.10
1′	-	143.56	-	150.31
2′	_	116.41	_	125.88
3′	7.99	131.50	8.08	131.75
4′	7.22	123.69	7.34	125.20
5′	7.66	134.46	7.66	132.07
6′	7.92	115.28	7.73	120.13
7′	-	168.07	-	165.77
Na	14.99	-211.3 ^{a,b}	_	-107.9 ^a
N _b	_	-12.5 ^{a,c}	_	62.2 ^{a,c}
N _c	11.10	-246.5 ^{a,d}	12.48	-251.0 ^{a,e}
Al	_	-	_	1.0^{f}

^a $\delta(^{15}N)$.

 $^{b-1}J(^{15}N, H) = 99.7 Hz.$

^c ¹⁵N labelled compound.

 $^{d-1}J(^{15}N, H) = 88.7 Hz.$

 e ¹ $J(^{15}N, H) = 88.7 Hz.$

^f $\delta(^{27}\text{Al}).$

provided the dyes exist in azo form. This is the case of compound **1b**. On the other hand, a coordination can cause a relatively large downfield shift in case a ligand exists in the hydrazone form (compounds **2b–4b**) and changes in δ ⁽¹⁵N) are due to a combination of two effects: the coordination (responsible for an upfield shift) and the change of the hydrazone tautomeric form to the azo form (responsible for even greater downfield shift). For details see Refs. [7,9].

We measured the ¹⁵N chemical shifts of compound **1b–4b**, using in ¹⁵N_b enriched (95% ¹⁵N) compounds using standard 1D spectra and both resonances at the natural abundance level using gs-¹H–¹⁵N correlation spectra. Having compared the data with cobalt(III) compounds [7] it is clear that very similar ¹⁵N chemical shifts were measured in compound **1b–4b** giving the evidence

	4a		4b	
	$\delta(^{1}H)$	δ(¹³ C)	$\delta(^{1}H)$	δ(¹³ C)
1	_	-194.2ª	_	
2	_	-74.3ª	_	-96.2ª
3	_	148.60	_	150.24
4	_	129.79	-	127.82
5	_	155.81	_	151.33
6	_	137.99	-	137.16
7	7.90	117.70	7.31	119.18
8	7.44	128.95	7.20	128.88
9	7.21	124.72	7.17	125.90
10	2.29	11.71	2.46	11.80
1′	_	143.15	-	149.38
2′	-	116.19	_	127.32
3′	7.99	131.42	8.04	131.88
4′	7.23	124.27	7.46	127.27
5′	7.66	134.40	7.54	128.78
6'	7.92	115.02	7.85	120.21
7′	_	167.95	_	165.45
Na	14.61	-209.3 ^{a,b}	_	-68.9^{a}
N _b	_	-24.7 ^{a,c}	_	58.1 ^{a,c}
A 1	_	_	_	2 3d

Table 4 ¹H. ¹³C. ¹⁵]

H, ¹³ C, ¹⁵ N and ²⁷ Al NMR	chemical shifts	of compounds 4a,b
n DMSO-de		

^a $\delta(^{15}N)$.

^{b 1} $J(^{15}N, H) = 100.3$ Hz.

^{c 15}N labelled compound.

^d δ(²⁷Al).

of N_a nitrogen coordination [7,9] with aluminium atom.

The conclusion is supported by Jagi's observation [21] who performed an X-ray study of cobalt complex of a dye, its ligand being derived from anthranilic acid, and also found the cordination of cobalt atom with nitrogen N_a .

The mutual differences in ¹H, ¹³C and ¹⁵N chemical shifts in compounds **1b–4b** are slightly greater then those in analogous hydroxy derivatives [9]. The reason might be that coordination procedure provides two new six-membered rings (see Scheme 1) while in analogous compounds in which –COO-group is substituted by –O-group [9] new six-membered and five-membered rings exist as a consequence of coordination. Due to a greater flexibility of six membered rings, small changes in bond lengths and bond angles can be expected.

Scheme 3.

3.2. Mass spectra

The complexes of three-valent metals with azo compounds carry a negative charge themselves, which is ideally suited for the negative-ion electrospray ionization (ESI) [22]. Similarly to the complexes of Al(III), Co(III) and Fe(III) with o,o'dihydroxyazodyes, the molecular anionic species [M-cation]⁻ are the only ions in the mass spectra of Al(III) complexes with $o_{,o'}$ -hydroxycarboxyazodyes (see Scheme 3a), which enables an easy molecular weight determination of all studied compounds. The character of cation does not influence ESI mass spectra in the negative-ion mode. The background noise in the spectra is very low, therefore ESI mass spectra can be used for monitoring of purity of synthesised complexes. The MS/MS analysis with the ion trap analyser is suitable for confirmation of expected structures, as demonstrated recently [23]. Scheme 3b shows an MS/MS spectrum of precursor ion at m/z 667, which confirms the structure assignment of compound 4b, as shown on inset fragmentation scheme. The main observed losses are CO_2 (m/z 44), C₆H₃ (m/z 75), CO₂ and CH₃CN (m/z 85), phenylisocyanate $(m/z \ 119)$ and N₂ $(m/z \ 28)$. The typical feature of MS/MS spectra is the subsequent loss of the same fragments for both organic ligands, e.g. 85 (667-582 and 463-378), 75 (582-507 and 378-303) and 44 (507-463 and 303-259). This approach was applied for the structure verification of all studied complexes.

Acknowledgements

This work was supported by the Grant Agency of the Czech Republic (Grant No. 104/99/0835). M.H. acknowledges the support of grant projects 203/00/P024 and 203/99/0044 sponsored by the Grant Agency of the Czech Republic.

References

- Price R. In: Chapter VII. The chemistry of synthetic dyes, Venkataraman K, editor, vol. III. New York: Academic Press, 1970.
- [2] Baumann H. Ullmanns encyclopaedie der technischen chemie, vol. 16. Weinheim: Chemie, 1978.
- [3] Beffa F, Back G. Rev Prog Color Relat Top 1984;14:33.
- [4] Zollinger H. Color chemistry. Syntheses, properties and application of organic dyes and pigments. Weinheim: Chemie, 1987.
- [5] Schündehüte K-H. In: Stroh R, editor. Methoden der Organischen Chemie (Houben-Weyl), vol. 10/3. Stuttgart: Georg Thieme, 1965.
- [6] Kaul BL, Pflieger D. GB 2 259 305 A 1993.
- [7] Lyčka A, Jirman J, Cee A. Magn Reson Chem 1990; 8:408–13.
- [8] Abilgaard J, Hansen PE, Josephsen J, Lyčka A. Inorg Chem 1994;33:5271–7.
- [9] Lyčka A, Rys P, Skrabal P. Magn Reson Chem 1998; 36:279–84.
- [10] Lyčka A. Annu Rep NMR Spectr 2000;42:1-57.
- [11] Hull W. In: Croasmun WR, Carlson RMK, editors. Twodimensional NMR spectroscopy. Application for chemists and biochemists. 2nd ed. New York: VCH Publishers, 1994. Chapter 2.
- [12] Braun S, Kalinowski H-O, Berger S. 150 and more basic NMR experiments. 2nd ed. Weinheim: Wiley-VCH, 1998.
- [13] Schetty G, Kuster W. Helv Chim Acta 1961;44:2193-204.
- [14] Hinton JF, Briggs RW. In: Harris RK, Man BE, editors. NMR and the periodic table. London: Academic, 1978. p. 259.
- [15] Delpuech J-J. In: Laszlo P, editor. NMR of newly accessible nuclei. New York: Academic, 1983. vol. 2, p. 153.
- [16] Akitt JW. In: Mason J, editor. Multinuclear NMR. New York: Plenum, 1987. Chapter 9.
- [17] Akitt JW. Progr NMR Spectr 1989;21:1.
- [18] Witanowski M, Stefaniak L, Webb GA. Annu Rep NMR Spectr 1993;25:57.
- [19] Wiench JW, Stefaniak L, Webb GA. Magn Reson Chem 1994;32:373.
- [20] Tušek-Božič L, Čurič M, Vikič-Topič D, Lyčka A. Coll Czech Chem Commun 1997;62:1888–904.
- [21] Jaggi H. Helv Chim Acta 1968;51:580-92.
- [22] Holčapek M, Jandera P, Přikryl P. Dyes and Pigments 1999;43:127–37.
- [23] Lemr K, Holčapek M, Jandera P, Lyčka A. Rapid Commun Mass Spectrom 2000;14:1881–8.