SUPPORTING INFORMATION

Reversed-phase UHPLC/ESI-MS determination of oxylipins in human plasma: case study of female breast cancer

Michaela Chocholoušková,¹ Robert Jirásko,¹ David Vrána,² Jiří Gatěk,³ Bohuslav Melichar,² Michal Holčapek,^{1,*}

¹University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic

²Palacký University, Medical School and Teaching Hospital, Department of Oncology, I.P. Pavlova 6, 775 20 Olomouc, Czech Republic

³Tomáš Baťa University in Zlín, Atlas Hospital, Department of Surgery, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic

* Corresponding author: Michal Holčapek, Tel.: +420 466037087; Fax: +420 466037068; Email: Michal.Holcapek@upce.cz

5 FIGURES, 5 TABLES

Fig. S-1 MS/MS spectra of 63 oxylipins with multiple product ions at optimized collision energy

Fig. S-1 (Continuation)

Fig. S-1 (Continuation)

Fig. S-1 (Continuation)

Fig. S-1 (Continuation)

Fig. S-2 MS/MS spectra of selected standard **a** 12-HETE at various collision energies **b** -15V, **c** -18V, **d** -20V, **e** -23V, **f** -25V, **g** -28V, and **h** -30V

Fig. S-3 Monitoring QC peak areas during the method validation

Fig. S-4 Receiver operating characteristic (ROC) and area under the curve (AUC) values

1- specificity

Fig. S-5 S-plot of 21 quantified oxylipins in plasma samples of breast cancer patients, where the most up-regulated lipid species are in the upper right corner

Table S-1 Oxylipin standards with their systematic names used for UHPLC/MS method development

Lipid class	[M-H] ⁻	Oxylipin species	Systematic name				
FA and conjugates	265	tetranor-12-HETE	8R-hydroxy-4Z,6E,10Z-hexadecatrienoic acid				
Octadecanoids	293	9-HOTrE	9S-hydroxy-10E,12Z,15Z-octadecatrienoic acid				
	293	13-HOTrE	13S-hydroxy-9Z,11E,15Z-octadecatrienoic acid				
	293	13-OxoODE	13-keto-9Z,11E-octadecadienoic acid				
	293	9-OxoODE	9-keto-10E,12Z-octadecadienoic acid				
	295	13-HODE	13S-hydroxy-9Z,11E-octadecadienoic acid				
	295	9-HODE	9S-hydroxy-10E,12Z-octadecadienoic acid				
	295	12(13)-EpOME	(±)-12(13)-epoxy-9Z-octadecenoic acid				
	295	9(10)-EpOME	9,10-epoxy-12Z-octadecenoic acid				
	313	12,13-DiHOME	12,13-dihydroxy-9Z-octadecenoic acid				
	313	9,10-DiHOME	9,10-dihydroxy-12Z-octadecenoic acid				
Eicosanoids	279	12-HHTrE	12S-hydroxy-5Z,8E,10E-heptadecatrienoic acid				
	317	15-HEPE	(±)-15-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid				
	317	11-HEPE	(±)-11-hydroxy-5Z,8Z,12E,14Z,17Z-eicosapentaenoic acid				
	317	5-HEPE	(±)-5-hydroxy-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid				
	317	14(15)-EpETE	(±)-14(15)-epoxy-5Z,8Z,11Z,17Z-eicosatetraenoic acid				
	317	12-OxoETE	12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid				
	317	15-OxoETE	15-oxo-5Z,8Z,11Z,13E-eicosatetraenoic acid				
	317	5-OxoETE	5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid				
	319	15-HETE	15S-hydroxy-5Z,8Z,11Z,13E-eicosatetraenoic acid				
	319	11-HETE	11S-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid				
	319	12-HETE	12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid				
	319	8-HETE	8S-hydroxy-5Z,9E,11Z,14Z-eicosatetraenoic acid				
	319	9-HETE	9-hydroxy-5Z,7E,11Z,14Z-eicosatetraenoic acid				
	319	5-HETE	5S-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid				
	319	11,12-EET	11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid				
	319	5,6-EET	5,6-epoxy-8Z,11Z,14Z-eicosatrienoic acid				
	321	15-HETrE	15S-hydroxy-8Z,11Z,13E-eicosatrienoic acid				
	321	5-HETrE	5S-hydroxy-6E,8Z,11Z-eicosatrienoic acid				
	327	tetranor-PGDM	9S-hydroxy-11,15-dioxo-2,3,4,5-tetranor-prostan-1,20-dioic acid				
	333	PGJ2	11-oxo-15S-hydroxy-5Z,9,13E-prostatrienoic acid				
	333	PGB2	15S-hydroxy-9-oxo-5Z,8(12),13E-prostatrienoic acid				
	333	PGA2	9-oxo-15S-hydroxy-5Z,10Z,13E-prostatrienoic acid				
	333	15-deoxy-δ-12,14 PGD2	9S-hydroxy-11-oxo-5Z,12E,14E-prostatrienoic acid				
	335	8,15 DiHETE	8S,15S-dihydroxy-5Z,9E,11Z,13E-eicosatetraenoic acid				
	335	6-trans LTB4	5S,12R-dihydroxy-6E,8E,10E,14Z-eicosatetraenoic acid				
	335	LTB4	5S,12R-dihydroxy-6Z,8E,10E,14Z-eicosatetraenoic acid				
	335	5,15-DiHETE	5S,15S-dihydroxy-6E,8Z,10Z,13E-eicosatetraenoic acid				
	335	5,6- Dihete	5S,6S-dihydroxy-8Z,11Z,14Z,17Z-eicosatetraenoic acid				

	337	14,15-DiHETrE	14,15-dihydroxy-5Z,8Z,11Z-eicosatrienoic acid
	337	5,6 -DiHETrE	5,6-dihydroxy-8Z,11Z,14Z-eicosatrienoic acid
	351	PGH2	9S,11R-epidioxy-15S-hydroxy-5Z,13E-prostadienoic acid
	351	PGE2	9-oxo-11R,15S-dihydroxy-5Z,13E-prostadienoic acid
	351	11β-PGE2	9-oxo-11S,15S-dihydroxy-5Z,13E-prostadienoic acid
	351	15-keto-PGF2α	9S,11R-dihydroxy-15-oxo-5Z,13E-prostadienoic acid
	351	PGD2	9S,15S-dihydroxy-11-oxo-5Z,13E-prostadienoic acid
	351	13,14-dh-15-k-PGE2	9,15-dioxo-11R-hydroxy-5Z-prostenoic acid
	353	8-iso-PGF2a	9S,11R,15S-trihydroxy-5Z,13E-prostadienoic acid-cyclo[8S,12R]
	353	(+/-) 5-iPF2α-VI	5,9S,11R-trihydroxy-6E,14Z-prostadienoic acid-cyclo[8S,12R]
	353	PGF2a	9S,11R,15S-trihydroxy-5Z,13E-prostadienoic acid
	353	13,14-dh-15-k-PGF2α	9S,11S-dihydroxy-15-oxo-5Z-prostenoic acid
	369	6-keto-PGF1α	6-oxo-9S,11R,15S-trihydroxy-13E-prostenoic acid
	369	TXB2	9S,11,15S-trihydroxy-thromboxa-5Z,13E-dien-1-oic acid
Docosanoids	343	20-HDoHE	(±)-20-hydroxy-4Z,7Z,10Z,13Z,16Z,18E-docosahexaenoic acid
	343	17-HDoHE	(±)-17-hydroxy-4Z,7Z,10Z,13Z,15E,19Z-docosahexaenoic acid
	343	10-HDoHE	(±)-10-hydroxy-4Z,7Z,11E,13Z,16Z,19Z-docosahexaenoic acid
	343	14-HDoHE	(±)-14-hydroxy-4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoic acid
	343	11-HDoHE	(±)-11-hydroxy-4Z,7Z,9E,13Z,16Z,19Z-docosahexaenoic acid
	343	7-HDoHE	(±)-7-hydroxy-4Z,8E,10Z,13Z,16Z,19Z-docosahexaenoic acid
	343	8-HDoHE	(±)-8-hydroxy-4Z,6E,10Z,13Z,16Z,19Z-docosahexaenoic acid
	343	4-HDoHE	(±)4-hydroxy-5E,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid
	361	19,20-DiHDPE	(±)-19,20-dihydroxy-4Z,7Z,10Z,13Z,16Z-docosapentaenoic acid
	375	Resolvin D1	7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid
Deuterated IS	299	D4-13-HODE	(+)-13-hydroxyl-9Z 11E_octadecadienoic_9 10 12 13-d. acid
	299	D₄-9-HODE	(\pm) 9-hydroxyl-10E.12Z-octadecadienoic-9.10.12.13-d4 acid
	317	D4-9 10-DiHOME	9 10-dihydroxy-127-octadecenoic-9 10 12 13-daacid
	317	D ₄ -12.13-DiHOME	(\pm) -12.1-dihydroxy-9Z-octadecenoic-9.10.12.13-d4 acid
	323	D7-5-0X0ETE	5-oxo-6F.8Z.11Z.14Z-eicosatetraenoic-6.8.9.11.12.14.15-d7 acid
	325	D ₆ -20-HETE	(±)-20-hvdroxy-5Z.8Z.11Z.14Z-eicosatetraenoic-16.16.17.17.18.18-d ₆ acid
	327	Ds-15-HETE	(±)-15-hvdroxy-5Z.8Z.11Z.13E-eicosatetraenoic-5.6.8.9.11.12.14.15-ds acid
	327	D8-12-HETE	(±)-12-hvdroxy-5Z.8Z.10E.14Z-eicosatetraenoic-5.6.8.9.11.12.14.15-d ₈ acid
	327	D ₈ -5-HETE	(±)-5-hydroxy - 6E.8Z.11Z.14Z-eicosatetraenoic-5.6.8.9.11.12.14.15-d ₈ acid
	330	D ₁₁ -14,15-EET	(±)-14(15)-epoxy-5Z.8Z.11Z-eicosatrienoic-16,16,17,17,18,18,19,19,20,20,20-d ₁₁ acid
	330	D11-8,9-EET	(±)-8(9)-epoxy-5Z,8Z,14Z-eicosatrienoic-16.16,17,17,18,18,19,19,20,20,20-du acid
	330	D ₁₁ -11,12-EET	(±)-11(12)-epoxy-5Z,8Z,14Z-eicosatrienoic-16,16,17,17,18,18,19,19,20,20,20,-du acid
	339	D4-LTB4	5S,12R-dihydroxy-6Z,8E,10E,14Z-eicosatetraenoic-6,7,14,15-d4 acid
	357	D₄-PGF2α	9S.11R.15S-trihvdroxy-5Z.13E-prostadienoic-3.3.4.4-deacid

Table	S-2 Information table about control and breast cancer patients. $BMI = body mas$	3 S
index,	cancer stages: pTis = tumor in situ, pT1 = tumors 1 mm or less, pT2 = tumors from	m
1.01 –	2 mm, and $pTx = not assessed$	

Healthy volunteers	Age	Breast cancer patients	t cancer Age tients		Smoker	Stage of cancer	
1	63	21	60	30.12	no	pTis	
2	51	22	54	25.31	no	pT1b	
3	50	23	56	23.05	yes	pT1c	
4	59	24	59	22.06	yes	pT1b	
5	62	25	65	32.05	yes	pTis	
6	55	26	50	-	yes	pTis	
7	60	27	65	37.34	yes	pT1c	
8	57	28	59	27.45	no	pT1a	
9	49	29	48	20.20	yes	pT1c	
10	55	30	53	33.86	yes	pT1c	
11	59	31	57	-	-	pTis	
12	57	32	62	26.37	no	pT1b	
13	56	33	50	23.72	-	pT2	
14	57	34	52	25.39	no	pT1a	
15	61	35	55	25.33	yes	pT1c	
16	58	36	53	24.53	no	pTx	
17	56	37	54	21.56	yes	pT1c	
18	48	38	61	24.68	no	pT1c	
19	53	39	52	22.49	no	pT1b	
20	56	40	63	-	-	pT1c	
Median ¹	56.5 ± 4.10	Median ¹	55.5 ± 4.99				

 1 Median \pm standard deviation

Table S-3 Parameters of validation for 14 deuterated oxylipin internal standards for high level

 (HL) and low level (LL) concentrations

Internal standards	LOD [ng/ml]	LOQ [ng/ml]	Slope	Intercept	Correlation coefficient	Matrix effect ^a [%]	Recovery rate HL [%]	Recovery rate LL [%]
D ₄ -PGF2a	1.50	5	3406	5205	0.9992	67.9 ± 4.8	87.5	83.3
D ₄ -LTB ₄	0.30	1	3863	3133	0.9995	110 ± 9.3	89.5	79.8
D ₄ -9-HODE	0.15	0.5	4801	6209	0.9996	127.3 ± 9.8	94.4	77.7
D ₄ -13-HODE	0.15	0.5	5529	8057	0.9995	109.3 ± 13.9	98.3	79.2
D ₄ -9,10-DiHOME	0.15	0.5	3071	4324	0.9994	130.5 ± 16.4	97.8	91.1
D ₄ -12,13-DiHOME	0.60	2	3406	5205	0.9994	120.6 ± 19.5	93.7	102.8
D7-5-0x0ETE	0.60	2	225.3	162.2	0.9996	110.5 ± 18.3	89.0	78.6
D ₆ -20-HETE	0.60	2	1515	1253	0.9994	145.5 ± 10.8	95.4	71.2
D ₈ -15-HETE	0.15	0.5	4697	3212	0.9991	152.8 ± 15.8	96.0	92.7
D ₈ -12-HETE	0.15	0.5	1171	1661	0.9995	159 ± 15.8	88.1	83.9
D ₈ -5-HETE	0.60	2	2297	2307	0.9993	162.1 ± 11	94.6	81.1
D ₁₁ -8,9-EET	0.15	0.5	290.6	280.2	0.9995	159.1 ± 12.6	84.3	95.9
D11-11,12-EET	0.15	0.5	1117	2608	0.9995	107 ± 18.7	89.5	94.0
D ₁₁ -14,15-EET	0.15	0.5	473.6	558.4	0.9994	120 ± 19.1	89.4	86.2

^aMean \pm standard deviation

Table S-4 Precision and accuracy for 14 deuterated IS for high level (HL) and low level (LL)

 concentrations

Internal standards	Within-run precision HL [%]	Between-run precision HL [%]	Within-run precision LL [%]	Between-run precision LL [%]	Within-run accuracy HL [%]	Between-run accuracy HL [%]	Within-run accuracy LL [%]	Between-run accuracy LL [%]
D₄-PGF2α	9.5	12.8	5.3	8.3	91.0	93.6	80.1	79.5
D ₄ -LTB ₄	7.7	8.7	9.2	10.9	101.6	100.2	103.7	108.6
D ₄ -9-HODE	7.7	11.6	11.2	11.7	103.1	111.8	111.4	113.0
D ₄ -13-HODE	6.0	9.4	12.7	8.3	101.1	110.7	92.6	103.7
D ₄ -9,10-DiHOME	6.2	13.5	6.6	8.3	94.6	88.1	95.2	106.6
D ₄ -12,13-DiHOME	5.4	9.2	5.6	6.7	99.4	98.4	107.3	111.7
D7-5-0x0ETE	5.2	6.8	15.0	10.1	96.5	104.2	100.8	104.7
D ₆ -20-HETE	8.2	12.6	24.8	25.3	112.5	117.0	115.6	123.0
D ₈ -15-HETE	9.2	10.4	10.5	11.5	99.3	101.9	104.6	92.8
D ₈ -12-HETE	6.1	7.6	8.9	5.72	101.7	98.6	94.7	104.1
D ₈ -5-HETE	5.9	8.7	11.5	9.3	89.3	88.9	98.2	86.0
D ₁₁ -8,9-EET	6.8	7.5	8.9	9.7	109.9	110.2	104.9	110.5
D ₁₁ -11,12-EET	6.1	7.3	5.5	10.5	102.2	105.2	97.8	114.9
D ₁₁ -14,15-EET	6.3	7.1	5.8	5.0	112.6	86.1	112.4	113.1

Table S-6 Average concentrations (pmol/mL) of oxylipins in human plasma of healthy volunteers (normal) and breast cancer patients (tumor) with statistical parameters; VIP – variable importance in projection

Oxylipin species	Normal ^a	Tumor ^a	Fold change	p-value ^b	T-value	VIP- value ^c
9-HODE	18.13 ± 7.16	30.85 ± 15.89	1.70	3.75E-03	-3.26	1.77
13-HOTrE	2.04 ± 1.11	3.10 ± 1.14	1.52	6.16E-03	-2.98	1.76
13-HODE	16.50 ± 5.97	22.40 ± 8.57	1.36	1.91E-02	-2.53	1.40
19,20-DiHDPE	1.79 ± 1.03	2.58 ± 1.02	1.44	2.28E-02	-2.44	1.26
9-HOTrE	4.00 ± 2.12	5.96 ± 3.48	1.53	2.61E-02	-2.39	1.18
12-HHTrE	0.51 ± 0.60	0.96 ± 0.66	1.90	3.36E-02	-2.26	1.59
14,15-DiHETrE	3.17 ± 1.35	4.04 ± 1.58	1.28	7.62E-02	-1.87	1.18
15-HETE	0.93 ± 0.50	1.36 ± 0.93	1.46	8.73E-02	-1.82	1.11
12-HETE	13.96 ± 13.47	27.32 ± 31.88	1.73	1.37E-01	-1.57	0.67
LTB4	0.24 ± 0.20	0.33 ± 0.22	1.38	1.89E-01	-1.37	1.14
9-HETE	1.18 ± 0.36	1.91 ± 2.67	1.39	2.01E-01	-1.34	0.80
11-HETE	0.88 ± 0.45	1.54 ± 2.32	1.74	2.42E-01	-1.24	0.84
14-HDoHE	2.81 ± 3.53	4.38 ± 4.54	1.56	2.42E-01	-1.22	0.65
7-HDoHE	9.03 ± 10.82	13.21 ± 12.35	1.46	2.75E-01	-1.14	0.78
20-HDoHE	1.28 ± 0.65	1.53 ± 0.77	1.20	2.80E-01	-1.12	0.52
4-HDoHE	3.34 ± 2.03	3.12 ± 1.65	0.91	6.32E-01	0.50	0.16
5,6-EET	1.35 ± 0.82	1.25 ± 0.74	0.93	6.92E-01	0.41	0.27
6-trans LTB4	0.26 ± 0.08	0.25 ± 0.07	0.96	6.94E-01	0.41	0.23
11,1 2-EE T	3.47 ± 2.84	3.31 ± 2.45	0.92	7.35E-01	0.35	0.07
11-HDoHE	0.48 ± 0.47	0.50 ± 0.36	1.04	9.01E-01	-0.13	0.32
5,6-DiHETrE	0.52 ± 0.28	0.51 ± 0.25	0.99	9.35E-01	0.08	0.09

^a Mean \pm standard deviation

^bCalculated using T-test

^c Generated from OPLS-DA model.