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Abstract The comprehensive approach for the lipidomic
characterization of human breast cancer and surrounding nor-
mal tissues is based on hydrophilic interaction liquid chroma-
tography (HILIC)–electrospray ionization mass spectrometry
(ESI-MS) quantitation of polar lipid classes of total lipid
extracts followed by multivariate data analysis using unsuper-
vised principal component analysis (PCA) and supervised
orthogonal partial least square (OPLS). This analytical meth-
odology is applied for the detailed lipidomic characterization
of ten patients with the goal to find the statistically relevant
differences between tumor and normal tissues. This strategy is
selected for better visualization of differences, because the
breast cancer tissue is compared with the surrounding healthy
tissue of the same patient, therefore changes in the lipidome
are caused predominantly by the tumor growth. A large in-
crease of total concentrations for several lipid classes is ob-
served, including phosphatidylinositols, phosphatidylethanol-
amines, phosphatidylcholines, and lysophosphatidylcholines.
Concentrations of individual lipid species inside the
abovementioned classes are also changed, and in some cases,

these differences are statistically significant. PCA and OPLS
analyses enable a clear differentiation of tumor and normal
tissues based on changes of their lipidome. A notable decrease
of relative abundances of ether and vinylether (plasmalogen)
lipid species is detected for phosphatidylethanolamines, but
no difference is apparent for phosphatidylcholines.
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Introduction

Breast cancer is the most common malignant tumor in women
population and one of the most common causes of death from
cancer [1, 2]. Breast cancer represents a group of different neo-
plastic disorders originating in the same organ rather than a single
disease entity. At least four breast cancer subtypes with distinct
biology and clinical presentation are currently recognized, includ-
ing two subtypes characterized by the expression of hormone
receptors (luminal A tumors and luminal B tumors), human
epidermal growth factor (HER)-2 positive, and triple negative
breast cancer. While tissue diagnosis is based on the histological
evaluation of the tumor tissue, there is still an unmet medical need
for biomarkers that would reliably reflect the disease burden.

Lipids are the building blocks of cell membranes, and the
lipidomic composition can change during the malignant trans-
formation. Lipid metabolism plays an important role in oxi-
dative stress and is associated, among other parameters, with
factors linked to the breast cancer risk including hormonal
balance, body mass index, breast density, drug metabolism,
and growth of insulin levels [3]. The potential effect of fat diet
and changes of lipid metabolism on cancer progression and
aggressiveness of cancer cells has been suggested by several
lipidomic studies that compare fatty acid composition in tu-
mor vs. normal tissues [4, 5] or blood of breast cancer patients
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vs. healthy controls [6, 7] using gas chromatography (GC)
coupled with flame ionization detection (FID) or mass spec-
trometry (MS). Several studies [4–6, 8, 9] report the ratio of n-
6 polyunsaturated fatty acids (PUFA) to n-3 PUFA being a key
factor for tumor angiogenesis that is essential for tumor
growth and metastasis. The major n-6 PUFA is linoleic acid
(FA 18:2), which can be metabolized into arachidonic acid
(FA 20:4). n-3 PUFA are represented mainly by α-linolenic
acid (FA 18:3), docosahexaenoic acid (FA 22:6), and
eicosapentaenoic acid (FA 20:5). In past, the ratio of n-6/n-3
PUFA was close to 1:1, but the current Western diet has
resulted in the change of this ratio up to 15:1 [8, 10], which
is considered as a potential risk factor for many disorders
including cancer.

Various lipidomic approaches have been used for the anal-
ysis of phospholipid composition in breast cancer cell lines
[11–14], human tumor and normal tissues [15, 16], or human
body fluids (blood or urine) [17, 18]. Reports on the differ-
ences of phospholipid composition between mammary epi-
thelial cells and breast cancer cells with different biological
behaviors show rather conflicting results mainly for phospha-
tidylethanolamines (PE), lysophosphatidylcholines (LPC),
and cardiolipins in different cancer cells [11, 12]. In another
study, total concentrations of phosphatidylcholines (PC) and
PE are increased by more than 41 % in breast cancer patients
compared with healthy controls [18].

The coupling of high-performance liquid chromatography
and mass spectrometry (HPLC/MS) is the technique most
frequently used for highly sensitive and selective lipidomic
characterization with the possibility to identify and quantify
complex mixtures of polar and nonpolar lipids, relatively
rapid screening of various biological samples [19].
Reversed-phase HPLC makes possible to separate individual
lipid species differing in fatty acyl chain lengths and the
number of double bonds, while hydrophilic interaction liquid
chromatography (HILIC) is more convenient for the separa-
tion of lipid classes. MS coupled with the direct infusion
(shotgun approach) is the technique commonly used for rapid
lipidomic analyses using product ion, neutral loss, and the
selected reaction monitoring scans typical for triple quadru-
poles (QqQ) and other hybrid tandemmass analyzers [20, 21].

Magnetic resonance imaging (MRI) [22–25] is used for the
noninvasive in vivo characterization of breast tissues that can
improve the specificity of tumor diagnostics, monitoring of
tumor responses to systemic treatment, and analyses of tumor
tissues in vivo and in vitro [1]. H MRI and [31] P MRI are
used for the monitoring of significant differences in phospho-
lipid metabolites in normal and tumor breast tissues. Increased
relative abundances are reported for choline metabolites and
most phospholipid classes except for PC, LPC, plasmalogen
phosphatidylethanolamines (pPE), and phosphatidylserines
(PS) [25]. MRI is used mainly as a diagnostic tool in medicine
due to low sensitivity and selectivity.

The main challenge in the lipidomic studies of biological
samples is the evaluation of data sets of large size and com-
plexity [26]. At present, principal component analysis (PCA)
and techniques based on partial least square projections to
latent structures (PLS) are often used for multivariate data
analysis (MDA) in multiple omics platforms [27]. The prin-
ciple of PCA is finding a transformation that reduces the
dimensionality of the data by conversion of a set of correlated
variables to a new set of uncorrelated variables called princi-
pal components [27]. PLS finds the linear correlations (pre-
dictive variables) between dependent variables (Ymatrix) and
predictor variables (Xmatrix). There is a risk that variations in
X matrix are not linearly correlated with Y matrix in PLS [27,
28]. For this reason, orthogonal partial least square (OPLS)
[27, 29] is enhanced, and the latent variables are divided into
linearly correlated (predictive) and nonlinearly (orthogonal)
correlated variables between X and Y matrices (variables in X
orthogonal to Y). In contrast to unidirectional correlations of
PLS and OPLS (i.e., X→Y), orthogonal 2 projections to
latent structures (O2PLS) [27, 30] is described using bidirec-
tional correlations (i.e., X↔Y). Generally, latent variables in
O2PLS are partitioned into predictive variables, variables in X
orthogonal to Y and variables in Y orthogonal to X. Advan-
tages of O2PLS in comparison to PLS are better data inter-
pretability, clear selection of outliers, reduction of model
complexity, determination the number of components, etc.
[26, 27, 30].

This paper describes the application of our previously
reported quantitative approach for the lipidomic characteriza-
tion of changes in breast cancer tissues compared with sur-
rounding normal tissues using HILIC-HPLC/electrospray ion-
ization mass spectrometry (ESI-MS). The lipid class quanti-
tation by HILIC is used for the first time for the clinical study,
and this approach clearly shows differences in lipidomes of
tumor and normal tissues. Observed differences in the
lipidome caused by the tumor growth are visualized by both
unsupervised and supervised MDA.

Experimental

Chemicals and standards

Acetonitrile, 2-propanol, methanol (all HPLC/MS grade),
chloroform stabilized by 0.5–1 % ethanol and hexane (both
HPLC grade), and ammonium acetate were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Deionized water was
prepared with a Demiwa 5-roi purification system (Watek,
Ledeč nad Sázavou, Czech Republic). N-Dodecanoyl-
heptadecasphing-4-enine-1-phosphoethanolamine (d17:1/
12:0) used as an internal standard (IS) for the nontargeted
quantitation was purchased from Avanti Polar Lipids (Alabas-
ter, AL, USA). Human breast tumor and surrounding normal
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tissues of ten patients (see Electronic Supplementary Material
(ESM) Table S1) were obtained from the Department of
Surgery, Atlas Hospital Zlín in the Czech Republic. All pa-
tients have read and signed the informed consent approved by
the Hospital Ethical Committee. No sample was excluded
from the statistical evaluation.

Sample preparation

Human breast tumor tissues and surrounding normal tissues
were extracted according to a modified Folch procedure [31]
using a chloroform–methanol–water system. Briefly, 50–
150 mg of human tissue and 25 μL of 3.3 mg/mL IS were
homogenized with a 5-mL mixture of chloroform–methanol
(2:1, v/v), and the homogenate was filtered using a coarse filter
paper. Subsequently, 1 mL of 1 mol/L NaCl was added, and
the mixture was centrifuged at 3000 rpm for 5 min at room
temperature. The chloroform bottom layer (total lipid extract)
containing the lipids was evaporated by a gentle stream of
nitrogen and redissolved in chloroform–2-propanol mixture
(1:1, v/v) for HILIC-HPLC/MS analyses. Total lipid extracts
were purified using re-extraction with hexane–methanol–wa-
ter system to remove the excess of nonpolar lipids, mainly
triacylglycerols (TG). Briefly, 100μL of total lipid extract was
mixed with a 900-μL mixture of hexane–methanol–water
(4:1:1, v/v/v). The extract was divided into hexane (upper)
layer containing mainly nonpolar lipids and methanol–water
(bottom) layer containing mainly polar lipids. Polar lipid
extracts were evaporated by a gentle stream of nitrogen and
redissolved in chloroform–2-propanol mixture (1:1, v/v) for
HILIC analyses.

HILIC-HPLC/ESI-MS conditions

Lipidomic analyses were performed on a liquid chromato-
graph Agilent 1200 series (Agilent Technologies, Waldbronn,
Germany) coupled with the Esquire 3000 ion trap analyzer
(Bruker Daltonics, Bremen, Germany). Lipid extracts were
separated into individual lipid classes using a Spherisorb Si
column (250×4.6 mm, 5 μm, Waters, Milford, MA, USA), a
flow rate of 1 mL/min, an injection volume of 10 μL, column
temperature of 40 °C, and a mobile phase gradient: 0 min,
94 % A+6 % B and 60 min, 77 % A+23 % B, where Awas
acetonitrile and B was 5 mM aqueous ammonium acetate
[32]. Individual lipid classes were detected in the positive-
and negative-ion ESI modes in the mass range m/z 50–1000
with the following setting of tuning parameters: pressure of
the nebulizing gas, 60 psi; drying gas flow rate, 10 L/min; and
temperature of the drying gas, 365 °C. The acquired data were
quantified using the nontargeted lipidomic analysis of indi-
vidual lipid classes using the single IS and response factors
described earlier [33]. Individual lipids within phos-
phatidylinositol (PI) and PE classes were identified and

quantified using relative intensities of deprotonated molecules
[M-H]− and PC using relative intensities of [M-CH3]

− ions in
the negative-ion ESI mode [34], while individual
sphingomyelins (SM) were quantified using protonated mol-
ecules [M+H]+ in the positive-ion ESI mode [33].

Data analysis

Unsupervised multivariate data analyses were performed
using PCA and supervised analyses using OPLS method in
the SIMCA software version 13.0 (Umetrics AB, Umeå,
Sweden) [27, 30]. The Pareto scaling was used before the
statistical analysis. Multivariate models were described using
R2 andQ2 parameters, where R2 describes fractions of the sum
of squares of all X (and Y for OPLS) that the model can
explain using the latent variables, and Q2 describes fractions
of the sum of squares of all X (and Y for OPLS) predicted by
the model according to the cross validation or how accurately
the model can be expected to predict new data. These values
for all models were shown in ESM Tables S2 and S3. All
statistical evaluations using PCA and OPLSmethod described
in this work were calculated from relative abundances.

Results and discussion

Quantitation of individual polar lipid classes using
HILIC-HPLC/ESI-MS

Total lipid extracts of normal and tumor tissues are prepared
using the modified Folch method and analyzed using HILIC-
HPLC/ESI-MS [33]. The breast tissue contains a large amount
of nonpolar lipids, mainly TG, which results in large tailing
peak containing TG and other nonpolar lipids in the HILIC
chromatogram interfering significantly with other lipid classes
(see ESM Fig. S1). For this reason, we perform re-extraction
of total lipid extracts using hexane–methanol–water mixture
to remove excessive nonpolar lipids (see ESM Fig. S1). The
removal of nonpolar lipids does not change the lipidomic
profiles of polar lipids. HILIC-HPLC/ESI-MS analyses of
purified fractions of polar lipids show significant differences
in the composition of individual lipid classes for the normal
(black line) and tumor (red line) tissues of the same patient
(Fig. 1a). The quantitation of individual lipid classes is per-
formed using the previously developed validated method
based on the combination of a single IS and response factors
for each class related to this IS [33, 34]. This approach
neglects small differences in ionization efficiencies and frag-
mentation behavior of individual lipids within the class sim-
ilarly as the large majority of both shotgun and LC/MS
lipidomic quantitations due to the lack of standards for all
lipids. All lipid classes presented in Fig. 1b show statistically
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significant differences in concentrations in normal tissues
(gray columns) vs. tumor tissues (red columns) of ten breast
cancer patients. The reliability of differences between groups
under comparison is estimated with the Holm-Bonferroni
method [35]. Numerical values are displayed in ESM
Table S4. Average concentrations of PI, PE, and LPC increase
more than four times and for PC more than twice in tumor
tissues, which show large differences in the lipid composition
of normal tissues and tumor tissues. Detailed analysis of
individual lipids inside lipid classes can provide important
information about the lipid metabolism in the breast cancer
tissue.

Analysis of individual lipid species using [M-H]−, [M-CH3]
−,

and [M+H]+ ions

Individual lipid species concentrations are reported by two
approaches. The first approach (Fig. 2) describes relative
abundances of lipid species (in %) and their proportional
changes between normal and tumor tissues, which is used
for MDA with a good clustering of two groups. The second
one (see ESM Fig. S2) describes absolute concentrations (in
μmol/g) calculated using relative abundances of individual
lipids multiplied by the total concentration of the whole lipid
class. Individual lipid species differ in attached fatty acyls,
which are annotated by their total carbon number and double

bond number (CN:DB). Positions of individual fatty acyls on
glycerol skeleton are not identified, and their shorthand nota-
tion corresponds with the established lipidomic terminology
[36]. The lipid class of PI provides the greatest difference
between concentrations of normal and tumor tissues (more
than four times) for ten analyzed patients (Fig. 1b, ESM
Table S4). Relative abundances of deprotonated molecules
[M-H]− enable to describe the composition of 24 species
(Fig. 2a). The highest relative abundance in both tissues
corresponds to PI 38:4 species containing two attached fatty
acyls with 38 carbon atoms and 4 double bonds. The most of
individual PI species has higher relative abundances in the
tumor tissue except for PI 38:4 (typically PI 18:0_20:4), PI
36:4 (PI 16:0_20:4), and PI 38:5 (PI 18:1_20:4). Figure 2Sb in
the ESM shows concentrations in micromoles per gram for
individual PI species and their differences for both tissues.
Statistically significant differences according to T test are
labeled by an asterisk (this annotation is used in all figures).

Fig. 1 a Positive-ion HILIC-
HPLC/ESI-MS of polar lipid
extracts of normal (black line) and
tumor (red line) tissues of breast
cancer patients. HPLC
conditions: column Spherisorb Si
(250×4.6 mm, 5 μm); flow rate,
1 mL/min; separation
temperature, 40 °C; and gradient:
0 min, 94 % A+6 % B and
60 min, 77 % A+23 % B, where
A is acetonitrile and B is 5 mM
aqueous ammonium acetate. b
Comparison of average
concentrations [μmol/g] of
individual lipid classes in normal
and tumor tissues for ten patients
with their standard errors. Peak
annotation: TG, triacylglycerols;
Chol, cholesterol; CE, cholesteryl
esters; PI, phosphatidylinositols;
PE, phosphatidylethanolamines;
IS, internal standard; PC,
phosphatidylcholines; SM,
sphingomyelins; LPC,
lysophosphatidylcholines.
Statistically significant
differences according to T test are
indicated by an asterisk

�Fig. 2 Relative abundances [%] of individual a PI, b PE, c PC, and d SM
in normal and tumor tissues of ten breast cancer patients determined using
relative abundances of [M-H]− and [M-CH3]

− ions in negative-ion mass
spectra or [M+H]+ ions in positive-ion mass spectra obtained by HILIC-
HPLC/ESI-MS. Statistically significant differences according to T test are
indicated by an asterisk
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At first, unsupervised MDA using PCAwas used for indi-
vidual PI species in normal and tumor tissues (see ESM
Table S2; Fig. 3a). The PCA model described using two
principal components shows clearly indistinguished clusters
of normal and tumor tissues. Supervised MDA using OPLS

was used for more simple understanding of individual PI
species influence on clustering of these groups (see ESM
Table S3; Fig. 3b). The OPLS model for individual PI species
(Fig. 4) is described using 1+2+0 components, where 1
predictive component summarizes the information contained

Fig. 3 Multivariate data analysis
of relative abundances [%] of
individual PI species in normal
(black) and tumor (red) tissues: a
PCA score plot, b OPLS score
plot, and c OPLS S-plot
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in X and Y matrices, 2 orthogonal in X components expresses
the information that is unique to X matrix, and 0 orthogonal in
Y component expresses the information that is unique to Y
matrix. The score plot (Fig. 3b) shows the clear separation of
two classes (normal vs. tumor tissue) of PI species, where the

horizontal axis corresponds to the variability between classes
and the vertical axis to the variability within classes. The S-
plot (see ESM Fig. S3c) displays positively (PI 34:1, PI 32:1,
PI 32:0) and negatively (PI 36:4, PI 38:0, PI 38:4) correlated
lipids with tumor tissues. In general, the score plot is a

Fig. 4 Multivariate data analysis
of relative abundances [%] of
individual PE species in normal
(black) and tumor (red) tissues: a
PCA score plot, b OPLS score
plot, and c OPLS S-plot
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summary of the relationship between normal and tumor tis-
sues, while the S-plot interprets patterns observed in the score
plot. The S-plot (Fig. 3c) shows the effect of attached fatty
acyls in PI species on the partition into classes of normal and
tumor tissues. PI 36:4 (PI 16:0_20:4), PI 38:4 (PI 18:0_20:4),
and PI 34:1 (PI 16:0_18:1) are statistically the most reliable,
where PI 36:4 and PI 38:4 are down-regulated in tumor
tissues, while PI 34:1, 32:1 and 32:0 are up-regulated. On
the other hand, PI species in the middle of the diagram close to
the zero vertical axis (PI 34:2, PI 36:3, and PI 34:3) have a low
statistical importance for the class differentiation. Obtained
statistical results are comparable with Fig. 2a, but the loading
plot provides a visualization of effects of individual PI on the
group differentiation.

The lipid class of PE can be divided according to the type of
fatty acyl linkage to the glycerol skeleton into the most com-
monly known group of ester-linked fatty acyls at both sn-1 and
sn-2 positions (diacyls) referred as aPE, ether-linked fatty acyls
in the sn-1 position (1-alkyl-2-acyl) referred as ethers (ePE),
and vinyl ether-linked fatty acyls in the sn-1 position (1-
alkenyl-2-acyl) referred as plasmalogens (pPE). Relative abun-
dances and concentrations of 46 individual PE are shown in
Fig. 5. Some combinations of PE (aPE, ePE, and pPE) having
identical [M-H]− ions cannot be distinguished using this ap-
proach; therefore, all possible variants are reported regardless of

probably lower concentrations of ePE according to the literature
[37]. The comparison of relative abundances in both tissues
(Fig. 2b) describes three statistically significant PE species
(P-36:4, P-38:5/O-38:6, and P-38:4/O-38:5) with higher rela-
tive abundances in normal tissues. Figure S2b in the ESM
illustrates differences of individual PE concentrations in normal
and tumor tissues, which are statistically significant for all PE
species having higher concentrations in tumors. Unsupervised
MDA of individual PE using the PCA method (Fig. 4a; see
ESM Table S2) shows again that smaller clusters for normal
tissues and wider clusters for tumor tissues are similar. The
MDA of individual PE using the OPLS model (Fig. 4b, c) is
described using 1+1+0 components (see ESM Table S3). The
score plot of PE species (Fig. 4b) depicts two well-separated
groups. Differences within one group are larger for tumor
tissues in comparison with normal tissues possibly due to
various tumor subtypes. The S-plot (Fig. 4c) shows a significant
down-regulated effect of three earlier mentioned PE species in
tumor tissues and, moreover, PE 34:1 (PE 16:0_18:1) and PE
36:2 (PE 18:1_18:1) increased in tumor tissues, which can also
be correlated with the data presented in Fig. 2b.

The PC class can be also divided according to fatty acyl
linkage into diacyls (aPC), ethers (ePC), and plasmalogens
(pPC) similarly as for PE. Relative abundances (Fig. 2c) and
concentrations (see ESM Fig. S2c) of 36 PC species illustrate
five statistically significant pPC or ePC and one aPC (namely
PC 38:6) species by using the comparison of relative abun-
dances and statistically significant differences in 26 PC spe-
cies by using comparison of concentrations. The PCA model
(see ESM Fig. S3a and Table S2) of relative abundances of PC
described using two principal components shows similar clus-
tering as for PE. The statistical evaluation of individual PC
(see ESM Fig. S3b) using the OPLS method with 1+1+0
components (see ESM Table S3) enables to obtain the infor-
mation about the differentiation of normal and tumor tissues.
The S-plot (see ESM Fig. S3c) describes the important effect
of most pPC and ePC (especially PC containing C20:4 and
saturated fatty acyl) for normal tissues and PC 40:6 (PC
22:6_18:0), PC 38:6 (PC 22:6_16:0), and PC 34:1 (PC
16:0_18:1) for tumor tissues.

Plasmalogens play a critical role in cell membranes, for
example in the structural function, signaling, or protection of
membrane lipids against oxidation. Increased lipid oxidation
associates with decreased plasmalogen levels and imbalances
in lipid metabolism, which can lead to disease progression
[38]. Therefore, we compare relative proportions of diacyls vs.
plasmalogens and ethers in normal and tumor tissues (Fig. 5).
The relative proportion of aPE in normal tissues is similar to
that of pPE+ePE (50:50), but the relative proportion of aPE in
tumor tissues is about one third higher than that of pPE+ePE
(62:38) (Fig. 5a). Different results are obtained for the PC lipid
class, where relative abundances of aPC vs. pPC+ePC are
almost the same in both tissues (Fig. 5b).

Fig. 5 Comparison of relative abundances of a the sum of aPE vs. the sum
of pPE+ePE species and b the sum of aPC vs. the sum of pPC+ePC
species in normal and tumor tissues with their standard errors of ten patients
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The SM species are analyzed using protonated molecules
[M+H]+ in ESI mass spectra. This approach cannot be used for
the analysis of SM 38:5 (SM 20:4_18:1) due to the presence of
sodium adduct [M+Na]+ ion of SM 36:2 with the identical
nominal mass to [M+H]+ ion of SM 38:5. Relative abundances
(Fig. 2d) and concentrations (see ESM Fig. S2d) of 16 individ-
ual SM species (except for SM 38:5) are compared in normal
and tumor tissues. SM 34:2 (SM 16:1_18:1), SM 34:1 (SM
16:0_18:1), SM 36:2 (SM 18:1_18:1), and SM 40:2 (SM
22:1_18:1) are described as statistically significant using the
comparison of relative abundances, while SM 34:1 using the
comparison of concentrations. Unsupervised MDA of individ-
ual SM using the PCA model described using two principal
components (see ESM Fig. S4a and Table S2) shows worse
clustering of normal and tumor groups in comparison with
other lipid species. The statistical evaluation using the OPLS
method with 1+1+0 components (see ESM Fig. S4b, c and

Table S3) shows the most statistically reliable SM 34:1 (SM
16:0_18:1) increasing in tumor tissues and SM 36:2 and SM
40:2 decreasing in tumor tissues (see ESM Fig. S4c). The
detailed analysis of LPC cannot be performed due to low
concentrations and low intensities of protonated molecules
[M+H]+ in ESI mass spectra. Analysis of the total lipidome
using unsupervised PCA method is shown in the score plot
(Fig. 6). The loading plot (Fig. 6b) displays the relationship
between X and Y matrices by using predictive components.
The first component describes the separation of normal and
tumor tissues—in this case, mainly PC P-38:0; O-38:1, PE
36:2, PC P-40:1; O-40:2, PI 32:2; and PC P-36:2; O-36:3.
The second component shows a variability in tumor tissues,
which is the most influenced by individual PI species (PI 38:1,
PI 38:4). OPLS MDA of the total lipidome shows excellent
results (Fig. 7a), where normal tissues form a compact group,
while differences within the tumor group are larger. OPLS S-

Fig. 6 Multivariate data analysis of relative abundances of all described lipid species in normal (black circles) and tumor (red circles) tissues using
unsupervised PCA method: a the score plot and b the loading plot
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plot (Fig. 7b) shows that SM 34:1 (SM d18:1/16:0) has the
highest positive correlation and PE P-36:4 (PE P-20:4_16:0)
has the highest negative correlation with the tumor tissue. Both
lipids exhibit high magnitude and high reliability in the OPLS
model; therefore, they significantly contribute to the clustering
of normal and tumor tissues.

Characterization of attached fatty acyls in phospholipids

The degree of lipid saturation plays an important role
in de novo lipogenesis in cancer cells, because poly-
unsaturated fatty acyls are more susceptible to lipid
peroxidation, which mediates cell death induced by
oxidative stress or cytotoxic drugs [39, 40]. For this
reason, we describe attached fatty acyls on the glycerol

skeleton in normal and tumor tissues by using HILIC-
HPLC/ESI-MS. Table 1 shows increased relative abun-
dances of saturated (0 DB) and low unsaturated (1–3
DB) fatty acyls and decreased level of high unsaturated
(4–6 DB) fatty acyls in tumor tissues in most phos-
pholipid classes. The biggest differences between nor-
mal and tumor tissues for saturated and low unsaturat-
ed fatty acyls are observed for pPC+ePC and pPE+
ePE, while lower relative abundances in tumor tissues
are detected for aPE and aPC. PI is less unsaturated in
tumors. Values of average carbon number (aCN) are
from 36.0 (aPC) to 40.9 (pPE+ePE), and differences
between normal and tumor groups are relatively small.
Average double bond (aDB) number varies from 2.0
(pPC+ePE) to 3.8 (pPE+ePE) for phospholipid classes,

Fig. 7 Score plot of supervised multivariate data analysis of relative abundances of all lipids in normal and tumor tissues using OPLS method: a score
plot and b S-plot
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and values of aDB are lower for tumor tissues in all
lipid classes, except for aPC. The class of SM contains
mainly monounsaturated attached fatty acyls, and all
SM belong to low unsaturated fatty acyls. The de-
scribed behavior of saturated, low unsaturated, and
high unsaturated fatty acyls in tumor tissues is in
agreement with that in the literature, but the present
methodology provides tools for reliable quantitation
and generalization of these trends for both class con-
centrations and individual lipid species as well.

Conclusions

The statistically significant increase of concentrations ob-
served for several phospholipid classes and also lipid species
within these classes is detected in breast tumor tissues of ten
patients compared to surrounding normal tissues of the same
patients. The decrease of relative abundances is observed for
pPE and ePE (but not for pPC and ePC), which may be related
to combined reasons not specific only to cancer, such as the
oxidative stress and inflammation as side effects that accom-
pany the tumor growth. The presence of phospholipids with
the general formula C34:1 (mainly combination of C16:0 and
C18:1) has shown marked association with tumor tissues for
several lipid classes, while similar but less pronounced trend
can be found for other phospholipids with low saturation
level. The present study demonstrates a proof-of-concept of
applicability of developed analytical methodology, but it also
has certain limitations due to its pilot nature. All patients in
this study are classified as luminal A or luminal B breast
cancer, and less frequent subtypes, including hormone recep-
tor-negative, HER-2 positive, and triple negative tumors, are
not represented in this pilot cohort. The possible association
between breast cancer subtype and phospholipid composition
could be reliably addressed in future larger cohort of patients.
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